Metaheuristics for transportation problems

Abdelghani BEKRAR Associate professor abdelghani.bekrar@univ-valenciennes.fr

Agenda

- Introduction
- Optimization problems in Transportation
- Complexity
- Solving Methods
 - Exact methods
 - Heuristics
 - Metaheuristics
- Classification of metaheuristics
- Local search method
- Simulated annealing

Agenda

• Introduction

- Optimization problems in Transportation
- Complexity
- Solving Methods
- Exact methods
- Heuristics
- Metaheuristics
- Classification of metaheuristics
- Local search method
- Simulated annealing

Introduction: Optimization Problem

- A combinatorial optimization problem (COP) belongs to the family of optimization problems where the set of feasible solutions is discrete or can be reduced to a discrete set,
- The objective is to find the **best** possible solution.

Vehicle Routing Problem

- Given a list of customers, distances between them and a set of vehicles, find tours that minimize the total length of the tours, such that one vehicle visits each location
- Formulated in 1959
- Typically, one has to serve a scattered set of customers from a single central depot, such that each vehicle has a limited capacity

Vehicle Routing Problem Variants

- VRP with time windows (VRPTW)
- Fleet size and mix VRP (FSMVRP)
- Open VRP (OVRP)
- Multi-depotVRP (MDVRP)
- PeriodicVRP (PVRP)
- VRP with backhauls (VRPB)
- Pickup and delivery problem (PDP)
- Dynamic VRP (DVRP)
- VRP with stochastic demands (VRPSD)

Pickup and Delivery Problem

- Each task consists of two parts
- Pickup
- Delivery
- VRP (and MDVRP) a special case of PDP
- Can be combined with other aspects
 - Time windows, capacity, fleet size and mix, ...
- Real-life examples include oil transportation, school buses, courier services, ...

Combinatorial optimization problem Definition

- An instance of COP is a pair (S, f), where S is the set of feasible solutions that each have a cost or profit f.f is a defined function from S to R.
- The objective is to find the optimal solution, i.e.: $x^* \in S$ such that $f(x^*) \leq f(x)$; $\forall x \in S$ (in case of minimization problem). $f^* = f(x^*)$ is the optimal cost or profit and $S^* = \{x \in S \mid f(x) = f^*\}$ is the set of optimal solutions.

Exemples of COP

- Knapsack problem
- Supply chain Optimization
 - Production planning
 - Procurement,
 - Lot sizing
- Vehicle routing problem (VRP),
- Scheduling or Sequencing problems in shop floor,
- Loading and bin packing problems

Example of COP

Capacitated Lot-Sizing Problem (CLSP)

• Demands for N products known on a planning horizon of length T periods. The production process requires a processing time and preparation time (setup) on a production unit (machine) of limited capacity.

- The costs:
 Processing, setup
 Handling (stoking).
 Penalities on backlogs
- The objective is to determine the periods of production and the production quantities in these periods to minimize the total cost while meeting all demands. (when and how)

Exemple de POC

- On considère une seule ressource
- Les coûts considérés pour chaque produit *i* et chaque période t sont :
 - le coût de production p_{it} ,
 - le coût de préparation s_{it} qui est généré chaque fois que la production a lieu,
 - et le coût de stockage *h_{it}*.

Why using metaheuristcs?

- Introduction
- Optimization problems in Transportation
- Complexity
- Solving Methods
- Exact methods
- Heuristics
- Metaheuristics
- Classification of metaheuristics
- Local search method
- Simulated annealing

Complexity of optimization problems

- Some problems are Easy to solve and but other are difficult,
- A Problem => solving method (algorithm)
- Algorithmic complexity vs Complexity of problems
- reference : M. R. Garey et D. S. Johnson. Computers and intractability, a guide to the theory of NP-completeness. Freeman, New York, 1979.

Complexity

The Travelling Salesmen Problem (TSP)

- A set of cities (n)
- A traveler who travels all cities and returns to the starting city,
- He visits each city once
- Find the shortest path
- A simple statement,

Complexity

Naive solution :

- List all possible paths,
- Take the shortest one,
- At the first city, we have n-1 possibilities,
- At the second we have n-2,...
- 1*(n-1)*(n-2)*....= n!
- For $n = 24, 24! \approx 3 \times 10^{23}$.
- If we take a *nanosecond* to calculate the cost of each circuit → we will need 3 × 10¹⁴ secondes, around 10 million years.

Complexity

- We assume that each basic operation takes constant time,
- The efficiency of an algorithm is the number of basic operations that it performs,
- It depends on the size of the input data and not from the computer
- The number of operations in the TSP algorithm is (n-1)!
- We note it: O(n!),
- The algorithm is said polynomial or in polynomial time if the number of operations is a polynomial function,
- When the function is not polynomial, we said it is exponential even if the function is not realy.

Complexité algorithmique

Complexity	Ref	Computer	Ordinateur
	Computer	100 times	1000 times
		faster	faster
Ν	N1	100*N1	1000*N1
N ²	N2	10*N2	31,6*N2
N ³	N3	4,64*N3	10*N3
2 ^N	N4	N4+6,64	N4+9,97
3 ^N	N5	N5+4,19	N5+6,29

Problem's Complexity

- Related to the nature of the problem • Is independent of used methods or algorithms,

Complexity Classes:

- The complexity theory mainly studies the problems of decision,
- This is to answer the question with "Yes" or "No" to the question "Is the problem has an
 optimal solution"
- Decision problem: each combinatorial optimization problem can be transformed into a
 decision problem. The optimization problem of the function f (x) is transformed into a
 decision problem is there a solution x such that f (x) < k, for a given k.
- For the TSP, the associated decision problem is the existence of a Hamiltonian path (CH) with a lower cost than an integer k.
 CH in a graph is a path that contains all the summits and passes exactly once through each vertex

Problem's Complexity ABOLT PROGRAMS Millennium Problems Yang-Mills and Mass Gap Riemann Hypothesis The prime number theorem determines the f the primes. The Rie P vs NP Problem Navier-Stokes Equation odge Conjecture

logy of the solution set of a system of algebraic equations can be defined in terms of vitain onecial cases e.e. when the solution set has dimension less than four. But in

Agenda

• Introduction

- Optimization problems in Transportation
- Complexity
- Solving Methods
- Exact methods
- Heuristics
- Metaheuristics
- Classification of metaheuristics
- Local search method
- Simulated annealing

Solving methods of a COP

- Exact Methods: are methods that seek an optimal solution for a COP.
- Advantage : optimale solution => satisfactory, with minimum cost and maximum benefit,
- Disadvantage :

 - Time consuming,
 For some problems (Difficult) it is **impossible** to determine an optimal solution
 Limited by the size of the problem
- Approximate Methods : constructif, based on experience,
 Advantage : fast and efficient,
- Disadvantage :
 No guarantee of the solution optimality,
 Complex and different parameters for each problem instance.

- Introduction
- Optimization problems in Transportation
- Complexity
- Solving Methods
- Exact methods
- Heuristics
- Metaheuristics
- Classification of metaheuristics
- Local search method
- Simulated annealing

Linear Programming

- Is to determine the *n* variables (decisions) that optimizes (maximize or minimize) the objective function.
- Min/Max f(x) = amount of cost(or amount of profit)
- Respect the constraints (capacity, order, ...)
- When variables are integer, we talk about Integer Linear Programming (ILP),
- When some variable are continue (in R), we talk about Mixed Integer Programming (MIP), $% \left(\left(A_{\mathrm{MP}}\right) \right) =0$
- Two steps:
 Model,
 Solve: simplex, Solver(GLPK, Coin-OR, IBM-Cplex, Excel, MSF,...)

Example: LP for CLSP

Parametres and notations

- For each periode t et and item i
 Setup cost s_u
 Handling cost h_u
 Processing cost p_u
 Customer demand D_u

- Processing time σ_{it}
 Setup time τ_{it}
 ressource capacity C_t

Variables

- $\begin{array}{ll} \mbox{variables} & x_n: \mbox{Quantity to make for item i at the periode t.} \\ & y_n = 1 \mbox{if we produce i in the periode t (i.e. si $x_n \ge 0$).} \\ & \bullet \ 0 \mbox{sion} \\ & \bullet \ I_n: \mbox{stock level in period t for item i.} \end{array}$

PL pour CLSP		
$Min\sum_{i=1}^{N}\sum_{t=1}^{T}(s_{it}Y_{it} + p_{it}X_{it} + h_{it}I_{it})$		
sc :		
$I_{i(t-1)} + X_{it} = D_{it} + I_{it}$	$\forall i, t$	
$\sum_{i=1}^{N} \left(\sigma_{it} X_{it} + \tau_{it} Y_{it} \right) \leq C_{t}$	$\forall t$	
$X_{it} \leq (\sum_{l=t}^{T} D_{il})Y_{it}$	$\forall i, t$	
$Y_{it} \in \{0,1\}$	$\forall i, t$	
$X_{it} \ge 0, I_{it} \ge 0$	$\forall i, t$	

- Introduction
- Optimization problems in Transportation
- Complexity
- Solving Methods
- Exact methods
- Heuristics
- Metaheuristics
- Classification of metaheuristics
- Local search method
- Simulated annealing

Heuristics

- Heuristic from <u>Greek</u> eurisko, « find or discover », i.e « the art of inventing, make discoveries »
- It is an approximatif algorithme that provide <u>polynomial</u> time a feasible solution, not necessary optimal, for COP,
 In general, it is designed for a specific proble, based on its particular structure,
- Can be based on experience,
- It is generally Iterative
- To be effective in terms of computation time, it should be simple and if possible in one pass,
- To prove the effectiveness of a heuristic, we try to check that it guarantees some performance,
- Risk: trapped in a local optimum

Heuristics

- The SHF heuristic for the 2D Bin Packing problem :

 - Sort items by increasing heightsPlacing in layersPlacement in available rectangles,
 - $\bullet \ \ Complexity of \ O \ (n2)$
 - Respect for guillotine constraints
 - Fall rate 11%

- Introduction
- Optimization problems in Transportation
- Complexity
- Solving Methods
- Exact methods
- Heuristics
- Metaheuristics
- Classification of metaheuristics
- Local search method
- Simulated annealing

What is a Metaheuristic?

- Meta-heuristic is a top-level strategy that guides an underlying heuristic solving a given problem. Stutzle (1999)
- it "refers to a master strategy that guides and modifies other heuristics to produce solutions beyond those that are normally generated in a quest for local optimality." Glover.
- "A metaheuristic is an iterative generation process which guides a subordinate heuristic by combining intelligently different concepts for exploring and exploiting the search spaces using learning strategies to structure information in order to find efficiently near-optimal solutions." Osman and J.P. Kelly (1996),
- "A methaeuristic is a set of concepts that can be used a define heuristic methods that can be applied to a wide set of different problems. In other words, a metaheuristic can be seen as a general algorithmic framework which can be applied to different optimization problems with relatively few modifications to make them adapted to a specific problem." Metaheuristics Network Website (2000) (2000).

Common features

- Starting from an initial solution and look better,
- Using the concept of 'neighborhood'
- Are strategies that guide the search process,
- Effectively explore the search space to find a solution close to the optimum,
- Escape the local minima
- Inspired by the natural experiments (tabu, genetic algorithms, ant colonies, Swarm) or physical (simulated annealing, electromagnetism)

Agenda

- Introduction
- Optimization problems in Transportation
- Complexity
- Solving Methods
- Exact methods
- Heuristics
- Metaheuristics
- Classification of metaheuristics
- Local search method
- Simulated annealing

Classification of metaheuristics

Different classifications was proposed

- The origine of the algorithme : Inspired from nature or not (bio-inspired, GA, SA, ...)
- Some recent algorithms do not fit into this classification
- The number of used solutions: Population based Algorithms (GA, ANT) Sigle solution algorithms (taboo search, ILS, VNS)
- Neighborhood: Most of metaheuristics use a single neighborhood
- Some metaheuristics, such as variable neighborhood search (Variable Neighborhood Search, VNS), use several neighborhoods,
- Diversification,
- Memory Usage:
 Metaheuristics use the history to move forward in exploration Others use memory more "long" to accumulate a summary of search parameters

Agenda

• Introduction

- Optimization problems in Transportation
- Complexity
- Solving Methods
- Exact methods
- Heuristics
- Metaheuristics
- Classification of metaheuristics
- Local search method
- Simulated annealing

Local search method

- Local search is a metaheuristic family based on the concept of neighborhood.
- Local search includes descent techniques, or the gradual improvement of a solution.
- For a minimization function, we calculate a decreasing costs of solutions.

Local search method

Methodology

- To solve an optimization problem with local search approach, we define:

 - Search space S • Cost function $f: S \rightarrow R$
 - Define a neighborhood

 - Choose the mechanism to visit different configurations

Local search method

- Set *S* is the space of the solution associated with a COP of minimization P and *s* is the current solution,
- f is the objective function that calculate for each solution s its cost; f : s $\in S \Rightarrow f(s)$

s

(s•

• The neighborhood N(s) of s is sub-set S ().

N(s) • The neighborhood N is usually symetric: s' belong to N(s) if s belong to N(s').

Local search method

ExampleTSP

- Search space
 - A possible solution is any hamiltonian cycle (route).
- Minimization function(objective)
- For each solution s, f(s) is the length of the route s (amount of edges length).
- Neighborhood
 - A possible neighborhood 2-opt.
 A 2-opt move consist in:

 - Replace two non-adjacent edges (a, b) and (c, d) with • Two edges(a, c) and (b, d).

- Optimization problems in Transportation
- Complexity
- Solving Methods
- Exact methods
- Heuristics
- Metaheuristics
- Classification of metaheuristics
- Local search method
- Simulated annealing

SA: History

- Developed by different researchers in the 80s,,
- Proposed first by S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi de la société IBM en 1982. [Vecchi, M. and Krkpatrick, S. (1983). Global wirng by simulated annealing. IEE. mas. c. 6.A., CA20:(4):15-22].
- Similair work was presented in 1985 by V. Cerny,
- Inspired by a physical phenomenon,
- A method that avoids the local optimum
- Since, it has been proven for some COPs and limitations facing other,
- This is the first metaheuristic that has been proposed.
- · Easy to implement

SA: main idea

In optimization :

- We accept the new neighbor if the cost decreases.
- It is also accepted if the cost increases (rebound) but with a
- probability, • Probability of accepting a rebound : $e^{-\Delta/T}$, ($\Delta > 0$ cost variation)
- The parameter T is called temperature.
- The probability tends to 0 during iterations.
- The probability decreases with the increase of the cost.

Coūt

SA algorithm

We define:

- An initial solution s_0 ,
- An initial temperature T_0 ,
- The Neighborhood N(s)
- ACooling Schedule function: CS(T),
- Stop criteria

SA algorithm, simple

- Set the initial solution s
- T := initial temperature T_0
- repeat
 - Take randomly a neighbor s' in N(s)
 - $\Delta = f(s) f(s')$ random = $e^{-\Delta/T}$

 - Generate randomly x uniformly in [0,1[
 - if $\Delta < 0$ or random>x then • s := s'
 - T := CS(T)
- until (stop criteria)

SA algorithm

Some recommendations :

- $\Box T$ should decrease slowly: *Cooling Schedule CS(T)*
- **Q**example CS(T) := k * T, k = 0.999, or (0 < k < 1)
- **Stop criteria**: $T < \varepsilon$, final temperature

 $\hfill The best solution is the last$

• Set the initial solution s

- T := initial temperature T_0
- ni := 0; //nbr of iterations
- ne := 0; // nbr of iterations without improvement
- bs := s: //best solution

• repeat

- for (niter, niter < niter_palier, niter ++) tirer au sort s' dans N(s)• $\Delta = f(s) \cdot f(s')$ random = $e^{\Delta/T}$

 - Generate x uniformly in [0,1] Generate x uniformly in [0,1] if $\Delta < 0$ or random>x then s := s'• if f(s) < f(bs) then bs := s; nc := 0
 - else nc = nc+1
- ni = ni +1 T := CS(T)
- until (T < ϵ) ou (ni = nimax) ou (ne >= nemax)

Example : Solving the Sudoko with SA

- A square grid of 81 squares divided into 9 squares 3 squares of side
- Partially filled with
- numbers 1 to 9 • The goal is to complete the filling of the grid with
- numbers from 1 to 9: • no number appears twice in
 - the same line
- in the same column or
- in the same sub-square.

Example : k-coloriage

- Let the graph G = (V, E), V is the set of vertex,
- E is the of pair of edges,
- Two vertexes v_1 and v_2 are adjacent if they are linked the edge ($\{v_1, v_2\} \in E$),
- The k-coloriage of G is the function
 - c:S → [1, k]

Such that $c(i) \neq c(j)$ when i and j are adjacent.

- c(v) is the color of the vertex v,
- The k-coloriage problem is NP-Hard
- for $k \ge 2$
- The objective function : for each configuration S,

f(S) is the number of edges \ll violated \gg in S.The objective is to minimize this number

Example : Solving the Sudoko with SA

- Sudoku is equivalent to complete a 9-coloring of a graph G = (V, E)
- Vertices are the grid boxes
- two vertices are connected by an edge if they belong to the same line in the same column or the same sub-square.
- application $f: V \rightarrow \{1, 9\}$, telle que $f(v) \neq f(w)$ if $\{v, w\} \in$ Ε.
- Can we complete a Sudoku? Is NP-complet

Exemple : le RS et le Sudoko

- The set of solutions S is all square grids 9 side whose cells contain a number from 1 to 9,
- $N = |S| = 9^{81-m}$, m is the *fixed cells*,
- Let $\mathbf{s} \in \mathbf{S}$, \mathbf{s}_{ij} : the contents of the cell of row i and column j .
- *f_{ij}*(s) is the number of occurrences of the digit s_{ij} in the row, column and square,
- The objective function :

$$f(s) = \sum_{i=1}^{9} \sum_{j=1}^{9} f_{ij}(s)$$

Example : Solving the Sudoko with SA

Neighborhood :

- Two grids are adjacent to each other if one can be obtained from the other by changing the number and content in one box (not fixed of course) ⇔ 1opt.
- Start the algorithm with height température,
- Decrease the temperature using the following CS. => with τ small real positive,

 $CS(T): T_{k+1} = \frac{T_k}{1 + \frac{\log(1 + \tau)}{ep + 1}}$

Advantages and disadvantages of simulated annealing

Advantages

- usually leads to good solutions,
- Under certain conditions, simulated annealing converges in probability to a global optimum
- A generic method: applicable to many problems and easy to implement,
- Flexible: possibility to add constraints to solve the problem,

Disadvantages

- Many setting: find the "perfect "
- significant execution time-dependent of the setting

some references

- Johann Dréo, Alain Pétrowski, Patrick Siarry, Eric Taillard, Metaheuristics for Hard Optimization: Methods and Case Studies, Eyrolles - 09/2003 17 x 23 - 356 pages ISBN : 2-212-11368-4
- Simulated annealing: Theory and applications, P.J.M Laarhoven & E. Aarts, 1987.
- C.R., Reeves, *Modern Heuristic Techniques for Combinatorial Problems*, Mc Graw-Hill, Advances topics in computer science. 1995

Exercice

- We consider the following TSP.
- Propose an initial solution,
- What can be the neighborhood
- Apply some iteration of the SA.

23

15

7

10