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1. Introduction: Scheduling

• Machine scheduling: assigning a group of 
ordered jobs to an individual machine

• Work-force scheduling: assigning a group of 
ordered tasks to an individual worker

• Task Mapping in distributed systems

• Making a good scheduling decision requires 
understanding specific tradeoffs

▫ job shop: control inventory while shipping orders 
on time

▫ assembly line: promote resource efficiency and 
maintain adequate finished goods



1. Introduction: Scheduling

• Job flow time: the amount of time elapsed from a 
job’s entry into the shop until the job completes 
all processing. 

• Makespan: the amount of time required to 
complete a pre-identified group of jobs.

• WIP: the amount of inventory in process.

• Inventory: the amount of raw material, WIP, and 
finished goods in stock.

• Utilization: the percentage of time a capacitated 
resource is used productively.

Efficiency-based Scheduling Criteria



1. Introduction: Scheduling

• Lateness: the difference between a job’s 
completion date and its due date.

• Tardiness: the amount of time it takes to 
complete a job once its due date has passed.

• Earliness: the amount of time until a job’s due 
date arrives once the job has been completed.

Due Date

Day 10

Complete 8

T=0, E=2

Lateness = -2

Complete 15

T=5, E=0

Lateness = 5

Customer Service-based Scheduling Criteria



1. Introduction: Scheduling

• Benefits of scheduling:

▫ Lower Cost: less money in inventory

▫ More Flexibility: less disruptive to change backlog 
that work in process

▫ Better Quality: faster defect detection

▫ Less Reliance on Forecasts: cycle times below 
frozen zone allow make to order

▫ Better Forecasts: distant (inaccurate) forecasts are 
no longer needed



1. Introduction: Example

Complex systems, such as aeronautic, avionic, 
robotic and intelligent transportation systems are 
more and more complex:

▫ Computing demand is growing;

▫ One single processor is inadequate;

▫ Technology, Real-time, Flexibility and Energy 
efficiency constraints.

So : Heterogeneous architecture CPU & FPGA is a 
great choice.
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Problematic :

Huong, G.N.T., Na, Y. and Kim, S.W., Applying frame layout to hardware design in FPGA for seamless support of cross calls in 

CPU-FPGA coupling architecture, Microprocessors and Microsystems, 35:462-472, 2011.



1. Introduction

The main difficulty faced by designers and engineers 
using these complex systems:

▫ The separation of the application tasks between these 
resources (CPU and FPGA).

▫ They need methods and tools that help to do this 
mapping efficiently while considering all the 
constraints.

▫ The problem is how to assign tasks to the available 
resources in order to optimize some performance 
criterion such as the makespan, the load balance, 
energy consumption, etc.

9

Why is this a problem :



1. Introduction
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Literature Overview :

Baker, K. R. and Trietsch, D., Principles of Sequencing and Scheduling, Wiley, 2009.

Scheduling 
(sequencing, 
planning, …) 
appears in 
different field 
such as :

Assembly line balancing

Resource-Constrained 
Project Scheduling

Load Balancing problem

Task Scheduling in parallel 
and distributed systems



2. The Problem
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Separate a set of tasks, subject to
precedence constraints (graph),
over a set of heterogeneous
processors with heterogeneous
communication delays

Specific Problem

Exemple2DofF.pps
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Problem classification

▪ MIMD (Multiple Instructions Multiple Data) 

architecture according to Flynn's taxonomy – 1966.

▪ R / pred, cikjl / Cmax, based on the notation proposed 

by Graham et al. 1979.

2. The Problem

M. J. Flynn  "Very high-speed computing systems",  Proc. IEEE,  vol. 54,  pp.1901 -1909 1966 

R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1979): Optimization and approximation in deterministic 

sequencing and scheduling: a survey, Ann. Discrete Math. 4, 287-326.



2. The Problem
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A good solution would:

▪ Speed up the distribution and the design cycle

▪ Guarantee parallel execution

▪ Take into account all possible parallelism 

opportunities, then determine the “best” parallel 

execution

▪ Take into account all precedence constraints and 

communication delays.



2. The Problem
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Example of problem with its solution:



Load Balancing Algorithm

Automatic interactive separation and

parallelization algorithm
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Task 1

rate =0.1sec

Task 2

rate=0.01sec

Task 3

rate=0.02sec

Task 4

rate=0.05sec

Task Graph

RT-LAB environment

Distributed real-time tasks generation

Multi-rate model

Simulink model SystemBuild model

Multi-body system

SYMOFROS

(Application of mechanic

formalism)

Computation tasks

dependance and

identification of practical

opportunities for

parallelization

Dynamic model

(symbolic expression and

numerical sequential

code: Simulink model

format)

Tasks Graph

Load balancing and tasks

scheduling

RT-Lab/RTW

Code generation
Numerical Parallel Code

Proposed

technology

Scheduling & Load Balancing over a Distributed 

Network



3. Mathematical Models
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Approach
▪ We build a model for the general case, model that is a 

MIQCP;

▪ We linearize the model so that it become a MILP.

▪ We reduce the size (number of variables and constraints) of 

the linear model by exploiting the precedence graph and 

pruning any unnecessary constraints or variables.

▪ We add bounds on Cmax and some general cuts to improve 

the running time.



3. Mathematical Model
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Objectives : 

▪ Minimize the makespan Cmax.

▪ What is the minimal execution time using m

processing units, where m is fixed.

Constraints : 

▪ Precedence constraints 

▪ Communication constraints 

▪ Disjunctive constraints

▪ ...



3. Mathematical Models
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Notation:
▪ N: Set of n tasks;

▪ M: Set of m processing units (CPUs/FPGAs);

▪ G=(N, A):a given directed acyclic graph, where N is the set

of tasks and A set of arcs representing the

precedence between tasks, i.e. (i, j) in A means

that the task i must be performed before the task j.

▪ Pred(i): Set of tasks that precede the task i;

▪ tik: Processing time of the task i on processing unit k;

▪ cik,jl: The cost of direct communication between task I

on processing unit k and the task j on processing

unit l;

▪ Fk : Set of tasks that should not be assigned to the

processing unit k.

▪ B: very large scalar value.

▪Decision variables: si & xik



3. Mathematical Models
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MIQCP formulation

𝑀𝑖𝑛 𝐶𝑚𝑎𝑥  (1) 

Subject to: 

 𝑥𝑖𝑘
𝑚
𝑘=1 = 1   ∀ 𝑖 ∈ 𝑁 (2) 

 

𝑠𝑖 +  𝑡𝑖𝑘𝑥𝑖𝑘
𝑚
𝑘=1 ≤ 𝐶𝑚𝑎𝑥    ∀ 𝑖 ∈ 𝑁 (3) 

 

𝑠𝑖 +  𝑡𝑖𝑘𝑥𝑖𝑘 +𝑚
𝑘=1   𝑐𝑖𝑘 ,𝑗𝑙 𝑥𝑗𝑙

𝑚
𝑙=1 𝑥𝑖𝑘

𝑚
𝑘=1 ≤ 𝑠𝑗 ,∀𝑗 ∈ 𝑁,∀𝑖 ∈ 𝑃𝑟𝑒𝑑(𝑗) (4) 

 

 
𝑠𝑖 + 𝑡𝑖𝑘 − 𝑠𝑗 ≤ 𝐵 1 − 𝑥𝑖𝑘𝑥𝑗𝑘  

𝑜𝑟                                                          
𝑠𝑗 + 𝑡𝑗𝑘 − 𝑠𝑖 ≤ 𝐵 1 − 𝑥𝑖𝑘𝑥𝑗𝑘  

    ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑀 (5) 

 

𝑥𝑖𝑘 = 0  ∀𝑖 ∈ 𝐹𝑘 ,∀𝑘 ∈ 𝑀 (6) 

 

𝑥𝑖𝑘 ∈  0, 1 ;  𝑠𝑖 ∈ 𝑅
+   ∀𝑖 ∈ 𝑁,∀𝑘 ∈ 𝑀 (7) 

MIQCP: Mixed-Integer Quadratically-Constrained Program.
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(4)  𝑠𝑖 + 𝑡𝑖𝑘𝑥𝑖𝑘 + 𝑐𝑖𝑘,𝑗𝑙𝑥𝑗𝑙𝑥𝑖𝑘 ≤ 𝑠𝑗 ∀𝑘, 𝑙 ∈ 𝑀

(4)   𝑠𝑖 +  𝑘=1
𝑚 𝑡𝑖𝑘𝑥𝑖𝑘 + 𝑘=1

𝑚  𝑙=1
𝑚 𝑐𝑖𝑘,𝑗𝑙𝑥𝑗𝑙 𝑥𝑖𝑘 ≤ 𝑠𝑗 , ∀𝑗 ∈ 𝑁, ∀𝑖 ∈ 𝑃𝑟𝑒𝑑(𝑗)

 ൞

𝑠𝑖 + 𝑡𝑖𝑘∗ + 𝑐𝑖𝑘∗,𝑗𝑙∗ ≤ 𝑠𝑗,

𝑠𝑖 + 𝑡𝑖𝑘∗ ≤ 𝑠𝑗 ,

𝑠𝑖 ≤ 𝑠𝑗.

 𝑠𝑖 + 𝑡𝑖𝑘∗ + 𝑐𝑖𝑘∗,𝑗𝑙∗ ≤ 𝑠𝑗

(4-a) 𝑠𝑖 + 𝑡𝑖𝑘𝑥𝑖𝑘 + 𝑐𝑖𝑘,𝑗𝑙 𝑥𝑗𝑙 + 𝑥𝑖𝑘 − 1 ≤ 𝑠𝑗 ∀𝑘, 𝑙 ∈ 𝑀; ∀𝑗 ∈ 𝑁, ∀𝑖 ∈ 𝑃𝑟𝑒𝑑(𝑗)

(4-a) 

𝑠𝑖 + 𝑡𝑖𝑘∗ + 𝑐𝑖𝑘∗,𝑗𝑙∗ ≤ 𝑠𝑗 ,

𝑠𝑖 + 𝑡𝑖𝑘∗ ≤ 𝑠𝑗 ,

𝑠𝑖 ≤ 𝑠𝑗 ,

𝑠𝑖 − 𝑐𝑖𝑘,𝑗𝑙 ≤ 𝑠𝑗.

 𝑠𝑖 + 𝑡𝑖𝑘∗ + 𝑐𝑖𝑘∗,𝑗𝑙∗ ≤ 𝑠𝑗

3. Mathematical Models

Linearization of communication constraints



3. Mathematical Models
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MILP formulation

𝑀𝑖𝑛 𝐶𝑚𝑎𝑥  (1) 

Subject to: 

 𝑥𝑖𝑘
𝑚
𝑘=1 = 1                                                  ∀ 𝑖 ∈ 𝑁 (2) 

 

𝑠𝑖 +  𝑡𝑖𝑘𝑥𝑖𝑘
𝑚
𝑘=1 ≤ 𝐶𝑚𝑎𝑥                              ∀ 𝑖 ∈ 𝑁 (3) 

 

𝑠𝑖 + 𝑡𝑖𝑘𝑥𝑖𝑘 + 𝑐𝑖𝑘 ,𝑗𝑙  𝑥𝑗𝑙 + 𝑥𝑖𝑘 − 1 ≤ 𝑠𝑗    ∀𝑘, 𝑙 ∈ 𝑀,∀𝑗 ∈ 𝑁,∀𝑖 ∈ 𝑃𝑟𝑒𝑑(𝑗) (4-a) 

 

𝑠𝑖 + 𝑡𝑖𝑘 − 𝑠𝑗 ≤ 𝐵 3 − 𝑥𝑖𝑘 − 𝑥𝑗𝑘 − 𝛿𝑖𝑗      ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑀 (5-a) 

𝑠𝑗 + 𝑡𝑗𝑘 − 𝑠𝑖 ≤ 𝐵 2 − 𝑥𝑖𝑘 − 𝑥𝑗𝑘 + 𝛿𝑖𝑗      ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑀 (5-b) 

 

𝑥𝑖𝑘 = 0  ∀𝑖 ∈ 𝐹𝑘 ,∀𝑘 ∈ 𝑀 (6) 

 

𝑥𝑖𝑘 ,𝛿𝑖𝑗 ∈  0, 1 ;  𝑠𝑖 ∈ 𝑅+                              ∀𝑖, 𝑗 ∈ 𝑁,∀𝑘 ∈ 𝑀 (7) 

MILP: Mixed-Integer Linear Program.



3. Mathematical Models
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Reduced MILP formulation

𝑀𝑖𝑛 𝐶𝑚𝑎𝑥  (1) 

Subject to: 

 𝑥𝑖𝑘
𝑚
𝑘=1 = 1                                                 ∀ 𝑖 ∈ 𝑁\𝐹𝑘 (2-a) 

 

𝑠𝑖 +  𝑡𝑖𝑘𝑥𝑖𝑘
𝑚
𝑘=1 ≤ 𝐶𝑚𝑎𝑥                             ∀ 𝑖 ∈ 𝐹𝑇 (3-a) 

 

𝑠𝑖 + 𝑡𝑖𝑘𝑥𝑖𝑘 + 𝑐𝑖𝑘 ,𝑗𝑙  𝑥𝑗𝑙 + 𝑥𝑖𝑘 − 1 ≤ 𝑠𝑗   ∀𝑘, 𝑙 ∈ 𝑀,∀𝑗 ∈ 𝑁\𝐹𝑙 ,∀𝑖 ∈ 𝑃𝑟𝑒𝑑(𝑗)\𝐹𝑘   (4-b) 

 

𝑠𝑖 + 𝑡𝑖𝑘 − 𝑠𝑗 ≤ 𝐵 3 − 𝑥𝑖𝑘 − 𝑥𝑗𝑘 − 𝛿𝑖𝑗    ∀𝑘 ∈ 𝑀,∀𝑖 ∈ 𝑁\𝐹𝑘 ,∀𝑗 ∈ 𝑁\𝑃(𝑖) (5-c) 

𝑠𝑗 + 𝑡𝑗𝑘 − 𝑠𝑖 ≤ 𝐵 2 − 𝑥𝑖𝑘 − 𝑥𝑗𝑘 + 𝛿𝑖𝑗    ∀𝑘 ∈ 𝑀,∀𝑖 ∈ 𝑁\𝐹𝑘 ,∀𝑗 ∈ 𝑁\𝑃(𝑖) (5-d) 

 

𝑥𝑖𝑘 ,𝛿𝑖𝑗 ∈  0, 1 ;  𝑠𝑖 ∈ 𝑅+                            ∀𝑘 ∈ 𝑀,∀𝑖, 𝑗 ∈ 𝑁\𝐹𝑘  (7) 

P(i) is the set of tasks that can be reached from i using a path in the graph G or the inverse graph 

G-1.



t1 t2

t4

t10

t3

t6

t5

t8

t7

t9

Example of graph G

Density 26.67%
Average degree 2.4
Minimum degree 0
Maximum degree 3

For 3 CUs:

Nb disjunctive constraints 600

Nb binary variables due to disjunctive constraints  100

P(i) & Disjunctive constraints
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The associated n power graph Gn

t1 t2

t4

t10

t3

t6

t5

t8

t7

t9

P(i) & Disjunctive constraints
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The associated graph H

For 3 CUs:

Nb disjunctive constraints 12 (vs. 600)

Nb binary variables due to disjunctive constraints    2 (vs. 100)

t1 t2

t4

t10

t3

t6

t5

t8

t7

t9

P(i) & Disjunctive constraints
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P(i) & Disjunctive constraints
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𝐴𝐻 = 
1≤𝑖<𝑛
𝑖<𝑗≤𝑛

¬ ሧ

𝑖=1

𝑛

𝐴𝑖 𝑖, 𝑗 = 
1≤𝑖<𝑛
𝑖<𝑗≤𝑛

¬ 𝐴 + 𝐼 𝑛 𝑖, 𝑗

In script m :

>> An=I; for i=1:n, An=logical(An+An*A);end, 

>> sum(sum(logical(An==0)))-(n*(n-1)/2)

>> [i, j] = find(An==0);

>> [i(find(j>i)),  j(find(j>i))]

gives the 
number of 
disjunctive 
constraints

gives the 
indices of 
concerned 
tasks
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MILP formulation

Number of binary variables        = 𝑛𝑚 + 𝑛2,

Number of continuous variables = 𝑛,

Number of constraints  = 2𝑛 + 𝐴 (𝑚2) + 2𝑚𝑛2

Reduced MILP formulation

Number of binary variables        = 𝑛𝑚 + 2|𝐴𝐻|,
Number of continuous variables = 𝑛,

Number of constraints  = 𝑛 + |𝑁+| + 𝑚2 𝐴 + 2𝑚|𝐴𝐻|

Where:

• |𝐴𝐻| =cardinality of the set of edges in the complement graph of the undirected graph associated with the n-th

power Gn of graph G.

• 𝑁+ =cardinality on the set of tasks with no successors
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5. Performance and Test Results

Illustrative data sets

Data set m n |A(G)|

Dataset 1 4 5 4

Dataset 2 4 20 29

Dataset 3 4 20 22

Dataset 4 4 20 24

Dataset 5 5 49 67

Dataset 6 5 49 67
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5. Performance and Test Results

Key Results on Illustrative data sets

Data set MILP Model MIQCP Model

Cmax Time (sec) Gap Cmax Time (sec) Gap

Dataset 1 35 0,265 0,00% 35 0,561 0,00%

Dataset 2 97,25 0,998 0,00% 97,25 600,401 2,59%

Dataset 3 76,00 5,819 0,00% 91,56 619,137 24,12%

Dataset 4 49,00 5,897 0,00% 64,07 603,069 33,57%

The results for comparing the non-linear and the linear models (time limit for the solver: 600 sec).
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5. Performance and Test Results

Key Results on Illustrative data sets

Data Set Linear Model Reduced Model

Cmax
Time 
(sec)

Gap nb cols
nb

rows
Cmax

Time 
(sec)

Gap
nb 

cols
nb 

rows

Dataset 1 35 0,28 0,00% 47 234 35 0,23 0,00% 32 111

Dataset 2 97,25 1,00 0,00% 482 3544 97,25 0,53 0,00% 239 1589

Dataset 3 76 5,82 0,00% 482 3432 76 2,32 0,00% 248 1544

Dataset 4 49 5,90 0,00% 482 3464 49 2,45 0,00% 232 1446

Dataset 5 152
3000,5

5
25,62% 2648 25293 145

3000,4
1

15,63
%

1138 10145

Dataset 6 191,5
3000,1

5
0,78% 2648 25346 190 30,61 0,00% 1051 6299

The results for comparing the linear and the reduced models (time limit for the solver: 3000 sec).
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5. Performance and Test Results

Key Results on Benchmark sets from Davidović et al.

The results for the effects of cuts and bounds (Average cpu time for 584 instances). 

Mod File
Time 
(sec)

Deterministic 
Time

Improvement comparing 
to M3 (%)

M3: reduced 
MILP

3,2210 1807,96 0,00%

M3 + Cuts 1,6428 1011,65 49,00%

M3 + Cuts + 
Bounds

1,8360 1166,77 43,00%

Davidović, T., Crainic, T.G., Benchmark-problem instances for static scheduling of task graphs with communication delays on homogeneous multiprocessor systems. Comput. Oper. 

Res. 33, 2155–2177 (2006)

Davidović, T.; Liberti, L.; Maculan, N. & Mladenović, N. Towards the optimal solution of the multiprocessor scheduling problem with communication delays MISTA Proceedings, 

2007
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5. Performance and Test Results

Key Results on Benchmark sets from Davidović et al.

Average solving time for 45 instances with n=10 to 50 and m =2 to 8 (time limit for the solver: 120 sec).

Average results for the 17 common solved 
instances

Model Nb solved CPU time (sec) Nb Var Nb Constraints

M6 19 3,5036 602 8965
M5 22 6,9955 6783 8925
M4 0 --- --- ---
M3 34 0,6725 107 2019
M3 + Cuts 35 0,4027 107 2035

M4: classical formulation (Davidović et al.)

M5: packing formulation (Davidović et al.)

M6: ILP-Transitivity-Clause model (Venugopalan et al.)

Venugopalan, S. & Sinnen, O. Xiang, Y.; Stojmenovic, I.; Apduhan, B.; Wang, G.; Nakano, K. and Zomaya, A. (Eds.) Optimal Linear Programming 

Solutions for Multiprocessor Scheduling with Communication Delays Algorithms and Architectures for Parallel Processing, Springer Berlin 

Heidelberg, 2012, 7439, 129-138
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5. Performance and Test Results

Key Results on Benchmark sets from Davidović et al.
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5. Performance and Test Results

Key Results on Benchmark sets from Davidović et al.
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Regression between number of variables and tasks

Regression Statistics

Multiple R 0.999236084

R Square 0.998472752

Adjusted R Square 0.998465994

Standard Error 45.43191537

Observations 228

ANOVA

df SS MS F P-value

Regression 1 304970070.9 304970070.9 147752.5985 0

Residual 226 466477.3191 2064.058934

Total 227 305436548.2

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 3.370 3.530 0.955 0.341 -3.586 10.325

NbTasks 9.604 0.025 384.386 0.000 9.555 9.653

y = 9.6043x + 3.3697

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600

N
b

V
ar

NbTasks

Number of variables for instances with high density graphs (D>=50%) 
and m=8
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5. Performance and Test Results

Other Results

Solving time for instances with 3 computing units and number of tasks from 2 to 50.
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5. Performance and Test Results

Other Results

Solving time for instances with 5 computing units and number of tasks from 2 to 50.
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FPGA
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6. Conclusions

❑We were able to take into account the general case of the 

communication delay in an heterogeneous environment;

❑ The MIQCP is convex but still too hard to solve in a 

reasonable amount of time;

❑ The linearization is possible and beneficial, the solving time 

drastically reduced;

❑ Linearization of the communications constraints is done 

without any additional variables;
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6. Conclusions

❑ Constraints and variables pruning, by exploiting the

precedence graph, cuts the solving time almost by half.

❑ The proposed model is promising and could handle average

problem with size up to 50 tasks and 8 CPU/FPGA units in

few seconds.

❑ In our case, we use this model to minimize the Cmax, but it

could be easily adapted to other objectives.
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5. Performance and Test Results

Parameters used for the testing

▪The entire testing is conducted on a laptop with 8 GB of 

RAM and an Intel processor i7-3740QM with 8 cores. The 

operating system is a 64-bit Windows 7 professional.

▪For solving the mathematical models, we use Cplex 12.5x

▪For coding we use OPL scripting language.
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