Objectifs de l'ECUE en termes de compétences et d'acquis d'apprentissage visés

A l'issue de cette UE, l'apprenant aura progressé sur les compétences suivantes du référentiel de la formation :

- BC2.2 : Analyser les besoins, spécifier et formaliser des exigences (cahier des charges fonctionnels)
- BC2.5 : Prédéfinir un système en intégrant les exigences préalablement identifiées
- BC2.6: Formaliser des solutions au moyen de représentations spécifiques (utilisation de modeleurs volumiques, représentations de plans normés, Bond graph, schémas cinématiques,...)
- BC3.3 : Définir une méthodologie de résolution (choix de modèles, stratégie de maillage, ...) et le formalisme associé
- BC3.4 : Modéliser un système (MEF, MVF, ...) et résoudre le problème associé
- BC3.5 : Analyser et vérifier la pertinence des résultats
- BC3.6 : Valider les modèles au regard de cas de référence existants et proposer des pistes d'amélioration ou d'optimisation

Plus précisément, il sera capable de :

- Modéliser des structures simples par des oscillateurs élémentaires conservatifs ou dissipatifs (Compétences 2.6, 3.3 et 3.4)
- Ecrire et résoudre les équations différentielles du mouvement d'un oscillateur élémentaire en régime libre ou forcé harmonique (Compétences 3.4 et 3.5)
- Dimensionner les paramètres d'un oscillateur élémentaire afin de répondre à un cahier des charges simple (Compétences 2.2 et 2.5)
- Analyser des fonctions de transfert d'oscillateurs élémentaires (diagrammes de Bode et Nyquist), en connaissant des méthodes expérimentales permettant de les construire (Compétence 3.6)

Description de l'ECUE

L'ECUE est enseignée selon le plan suivant :

- Introduction : Intérêt de l'étude des vibrations des structures (ex : danger de la résonance, apprendre à concevoir une structure pour l'éviter...), exemples pour différents domaines d'application
- Chapitre 1 : étude du régime libre d'un oscillateur à 1 ddl, conservatif puis dissipatif ;
- Chapitre 2 : étude du régime forcé d'un oscillateur à 1 ddl, conservatif puis dissipatif ; transmissibilité et isolation ;
- Chapitre 3 : analyse modale d'un système à 1 ddl, diagrammes de Bode et de Nyquist, principe des essais au marteau d'impact
- Chapitre 4 : vers des systèmes à N ddl, principe des matrices de masses, raideurs et amortissement, notions de base modale et déformée... application : étouffeur de vibrations

Prérequis

PFS, PFD, Equations différentielles du second ordre (memento disponible sur Moodle)

Références

"Vibrations des Structures, Mesure, analyse modale, modélisation", Georges VENIZELOS, Edition Ellipses, Technosup, Génie Mécanique (ISBN 978-2-7298-6335-7)

"Mécanique Vibratoire, Systèmes discrets linéaires", M. DEL PEDRO, P. PAHUD, Presses Polytechniques et Universitaires Romandes (ISBN 978-2-88915-243-0)