Module numérique avancé	Semestre 6	Responsable : S. Delprat

Objectifs de l'ECUE en termes de compétences et d'acquis d'apprentissage visés

A l'issue de cette UE, l'apprenant aura progressé sur les compétences suivantes du référentiel de la formation :

- AC 2 Analyser, Spécifier un cahier des charges
- AC 4 Analyser, Étudier, Modéliser un système technique existant
- CC 2 Définir en détail les fonctions de chaque composant
- CC 3 Intégrer et éventuellement choisir des composants existant dans une architecture globale
- IC 2 Mettre en œuvre une loi de commande dans un environnement de développement adapté à la dynamique du système, évaluer les résultats obtenus et les optimiser
- IC 8 Tester et Valider une architecture de commande ou de pilotage d'un système technique

Plus précisément, il sera capable de :

- Arriver à déterminer un cahier des charges tenant compte du choix de l'échantillonnage, des caractéristiques de la BO et de ce qui est attendu en BF
- Analyser la stabilité et les performances d'une boucle numérique
- Savoir numériser une loi de commande continue en incluant les performances de la BF"
- Choisir une carte d'entrées/sorties fonction de la ou des période(s) d'échantillonnage du nombre d'entrées/sorties etc.
- Choisir une période d'échantillonnage (Shannon et suréchantillonnage par rapport à la BO et à la BF)
- Synthétiser une loi de commande numérique pour des systèmes monovariables en respectant un Cahier des Charges (performances, stabilité, robustesse, rejet de perturbations)
- Mettre en œuvre une loi de commande sur un composant programmable et évaluer les résultats obtenus
- Etre capable de modifier / d'améliorer la conception du régulateur en fonction des résultats constatés (changement de période d'échantillonnage, modification du calcul des gains de la commande etc.)

Description de l'ECUE

Les élèves devront être capables d'analyser et de synthétiser une loi de commande numérique de systèmes continus. Pour ce faire l'ECUE propose des :

- Rappels sur l'échantillonnage, les bloqueurs, les équivalences fonctions de transfert / équations aux différences, pôles et zéros et de convergence des équations
- Synthèses de correcteurs à partir des briques élémentaires, analyse BO / BF
- Solutions à l'équation de Diophantine (identité de Bezout), filtrage, spécifications
- Synthèses de correcteurs à partir de placements de pôles et de contraintes de performances (RST avec calibrage des fonctions de sensibilité)

Pour les TP les étudiants devront :

- Mettre en œuvre les correcteurs depuis l'environnement Matlab/Simulink ou Arduino pour piloter des maquettes (bille sur plaque, rotflex, etc)
- Analyser l'effet du paramétrage (pré spécifications) sur les performances (transitoire, compromis robustesse/performance, sensibilité au bruit)
- Rédiger un rapport par séance de TP présentant la synthèse des correcteurs, les résultats obtenus leur analyse.

Prérequis

Fonctions de transfert échantillonnées. Stabilité et précision des systèmes continus et discrets en boucle fermée. Programmation Matlab/Simulink. Cours Moodle de remise à niveau

Références

I.D. Landau, Commande des Systèmes, Conception, identification et mise en œuvre, Hermès-Lavoisier, 2022, ISBN: 978-2-7462-0478-2