* Copyright © Stephane.POUJOULY 2015. All rights reserved. * Librairie pour LTspice IV * Source : http://poujouly.net * Version 3.1 - 03 février 2015. *Description d'un Multiplieur Analogique .subckt mult0 1 2 3 R1 1 0 1000k R2 2 0 1000k B1 3 0 V={K}*V(1)*V(2) .ends mult0 *Description d'un VCO avec Diviseur Intégré .subckt vco_div 1 2 3 4 5 A1 1 0 0 0 0 0 5 0 MODULATOR space={fo} Mark={fo+KVCO} A2 1 0 0 0 0 0 2 0 MODULATOR space={fo/N1} Mark={(fo+KVCO)/N1} A3 1 0 0 0 0 0 3 0 MODULATOR space={fo/N2} Mark={(fo+KVCO)/N2} A4 1 0 0 0 0 0 4 0 MODULATOR space={fo/N3} Mark={(fo+KVCO)/N3} .ends vco_div *Description du VCXO utilisé pour les séances E&R .subckt vco_div_ER 1 2 3 4 A1 1 0 0 0 0 0 2 0 MODULATOR space={(10e6)/75} Mark={(10e6+KVCO)/75} A2 1 0 0 0 0 0 3 0 MODULATOR space={(10e6)/375} Mark={(10e6+KVCO)/375} A3 1 0 0 0 0 0 4 0 MODULATOR space={(10e6)/5000} Mark={(10e6+KVCO)/5000} .ends vco_div_ER *Description d'un Gain Analogique .subckt gain 1 2 B1 2 0 V={G}*V(1) .ends gain *Description d'un additionneur Analogique .subckt sum1 1 2 3 B1 3 0 V=V(1)+V(2) .ends sum1 *Description d'un soustracteur Analogique .subckt diff1 1 2 3 B1 3 0 V=V(1)-V(2) .ends diff1 *Description d'un integrateur .subckt integ 1 2 G1 0 NK001 1 0 1 C1 NK001 0 {1/wo} Rser=0 E1 2 0 NK001 0 1 .ends integ *Description d'un dérivateur pur .subckt derivateur_pur 1 2 G1 0 NK001 1 0 1 L1 NK001 0 {1/wo} Rser=0 E1 2 0 NK001 0 1 .ends derivateur_pur *Description d'un correcteur proportionnel derivateur .subckt Cor_P_D 1 2 G1 0 NK001 1 0 1 L1 NK001 0 {Td} Rser=0 B1 2 0 V={K}*V(1)+V(NK001) .ends Cor_P_D *Description d'un correcteur proportionnel integral .subckt Cor_P_I 1 2 G1 0 NK001 1 0 1 C1 NK001 0 {Ti} Rser=0 B1 2 0 V={K}*V(1)+V(NK001) .ends Cor_P_D *Description d'un correcteur proportionnel integral derivé .subckt Cor_P_I_D 1 2 G1 0 NK001 1 0 1 L1 NK001 0 {Td} Rser=0 B1 2 0 V={K}*V(1)+V(NK001)+V(NK002) G2 0 NK002 1 0 1 C1 NK002 0 {Ti} Rser=0 .ends Cor_P_I_D *Description d'un Moteur Capteur .subckt motcap0 1 2 3 R1 NKS001 1 20k R2 3 NKS001 20k C1 NKS001 2 2.2n C2 3 2 22n .ends motcap0 *Description d'un ensemble peltier Capteur .subckt pelt_cpt 1 2 3 R1 NKS001 1 400k R2 2 NKS001 400k C1 NKS001 3 10n C2 2 3 100n .ends pelt_cpt *Description de l'OTA CA3080 .subckt ca3080 1 2 3 4 5 6 D1 4 6 1N4148 R1 2 1 10meg B1 0 3 I=I(D1)*tanh((V(2)-V(1))/(52e-3)) R2 5 0 10k .model 1N4148 D(Is=2.52n Rs=.568 N=1.752 Cjo=4p M=.4 tt=20n Iave=200m Vpk=75 mfg=Motorola type=silicon) .ends ca3080 * Description de ampli op special librairie * Pour éviter le pb .include opamp.sub .subckt ampop 1 2 3 G1 0 3 2 1 {Aol} R3 3 0 1. C3 3 0 {Aol/GBW/6.28318530717959} .ends ampop * Description du MAX275 .subckt max275 1 2 3 4 5 6 S1 Np001 1 Np002 0 inter275 B1 Np002 0 V=table(V(2),-5,0,0,0,5,1) R2 2 0 1meg B2 Np003 0 V=table(V(2),-5,0,0,1,5,0) S2 Np005 1 Np003 0 inter275 S3 Np006 1 Np004 0 inter275 B3 Np004 0 V=table(V(2),-5,1,0,0,5,0) R1 3 Np007 13k R3 3 Np008 65k R4 3 Np009 325k XU1 Np001 0 Np007 ampop Aol=100K GBW=10Meg XU2 Np005 0 Np008 ampop Aol=100K GBW=10Meg XU3 Np006 0 Np009 ampop Aol=100K GBW=10Meg R5 Np007 Np001 52k R6 Np008 Np005 13k R7 Np009 Np006 13k XU4 3 0 Np010 ampop Aol=100K GBW=10Meg XU5 Np011 0 6 ampop Aol=100K GBW=10Meg XU6 Np012 0 4 ampop Aol=100K GBW=10Meg C1 Np010 3 79.575p R8 Np011 Np010 50k R9 6 Np011 50k R10 Np012 5 5k C2 4 Np012 79.575p .model inter275 SW(Ron=0.01 Roff=100meg vt=0.5 Vh=0 Lser=0 Vser=0) .ends max275 *Description d'un câble coaxial idéal .subckt coaxideal 1 2 3 4 T1 1 2 3 4 Td={Lg*sqrt(eps)/300000000} Z0={Zo} .ends coaxideal *Description d'un multiplieur analogique AD633. *Macro modèle modélisant : *Les tensions de saturations *La bande passante de 1MHz. * VNEG * X1 X2 Y1 Y2 | Z W VPOS .SUBCKT AD633 1 2 3 4 5 6 7 8 B1 9 0 V=(0.1*(V(1)-V(2))*(V(3)-V(4)))+V(6) R3 9 10 100 C1 10 0 1.5915n B2 7 0 V=table(V(10),V(5),V(5),V(8),V(8)) .ENDS AD633 *Description d'un amplificateur idéal défini par son *amplification et une tension de saturation. .subckt ampli1 1 2 B1 2 0 V=table(V(1),-{Vsat/A},-{Vsat},{Vsat/A},{Vsat}) .ends ampli1 *Description d'un soustracteur Analogique .subckt diff2 1 2 3 4 B1 4 0 V=V(1)-V(2)-V(3) .ends diff2 *Description d'un soustracteur Analogique .subckt diff3 1 2 3 4 B1 4 0 V=V(1)-V(2)+V(3) .ends diff3 *Description d'un soustracteur Analogique .subckt diff4 1 2 3 4 B1 4 0 V=V(2)+V(3)-V(1) .ends diff4 *Description d'un additionneur Analogique .subckt sum2 1 2 3 4 B1 4 0 V=V(1)+V(2)+V(3) .ends sum2 *Description d'un potentiomètre * Avec résistance de contact de 1milli ohm * (cela permet de prendre alpha =0 ou 1 sans un message d'erreur du simulateur} .subckt pot 1 2 3 R1 1 2 {{alpha*P}+0.001} R2 2 3 {{P-{alpha*P}}+0.001} .ends pot * Description d'un retard pur .subckt retardpur 1 2 T1 N002 0 N001 0 Td={tau} Z0=50 R1 N001 0 50 R2 N002 N003 50 E1 2 0 N001 0 1 E2 N003 0 1 0 2 .ends retardpur *Description d'un multiplieur analogique AD835. *Macro modèle modélisant : *Les tensions de saturations +5V -5V (amélioration du composant !!) *La bande passante de 250MHz *Les Impédances d'entrée de la doc 100kohm // 2pF * VNEG * X1 X2 Y1 Y2 | Z W VPOS .SUBCKT AD835 1 2 3 4 5 6 7 8 R1 1 0 100k R2 2 0 100k R3 3 0 100k R4 4 0 100k C1 1 0 2p C2 2 0 2p C3 3 0 2p C4 4 0 2p B1 9 0 V=(V(1)-V(2))*(V(3)-V(4))+V(6) R5 9 10 10 C5 10 0 63.662p B2 7 0 V=table(V(10),V(5),V(5),V(8),V(8)) .ENDS AD835 * Description d'un filtre gaussien approché par * 2 cellules du 2nd ordre passe bas. * Le paramètre de réglage est D qui représente le * débit binaire * Modèle ou BT=0.3 * E S .subckt filtregaussienBT03 1 2 R1 N004 N003 1.8156 C1 0 N001 {0.455/D} Rser=0 L1 N004 N001 {0.455/D} Rser=0 E1 N002 0 N001 0 1 E2 N003 0 1 0 1 R2 N006 N002 1.0182 C2 0 N005 {0.28777/D} Rser=0 L2 N006 N005 {0.28777/D} Rser=0 E3 2 0 N005 0 1 .ends filtregaussienBT03 * Modèle ou BT=0.5 * * E S .subckt filtregaussienBT05 1 2 R1 N004 N003 1.0182 C1 0 N001 {0.1727/D} Rser=0 L1 N004 N001 {0.1727/D} Rser=0 E1 N002 0 N001 0 1 E2 N003 0 1 0 1 R2 N006 N002 1.8158 C2 0 N005 {0.273/D} Rser=0 L2 N006 N005 {0.273/D} Rser=0 E3 2 0 N005 0 1 .ends filtregaussienBT05 *Description de filtre sans l'utilisation *de la variable de laplace s *Afin d'obtenir une réponse correcte et plus rapide *dans le domaine temporel *Passe bas du 1er ordre * E S .subckt pbas1ord 1 2 R1 N001 N002 1 C1 0 N001 {0.159155/fo} Rser=0 E1 2 0 N001 0 {To} E2 N002 0 1 0 1 .ends pbas1ord *Passe haut du 1er ordre * E S .subckt phaut1ord 1 2 R1 0 N001 1 C1 N002 N001 {0.159155/fo} Rser=0 E1 2 0 N001 0 {To} E2 N002 0 1 0 1 .ends phaut1ord *Passe bas du 2nd ordre * E S .subckt pbas2ord 1 2 R1 N003 N002 {2*m} C1 0 N001 {0.159155/fo} Rser=0 L1 N003 N001 {0.159155/fo} Rser=0 E1 2 0 N001 0 {To} E2 N002 0 1 0 1 .ends pbas2ord *Passe haut du 2nd ordre * E S .subckt phaut2ord 1 2 R1 N003 N002 {2*m} C1 N003 N001 {0.159155/fo} Rser=0 L1 N001 0 {0.159155/fo} Rser=0 E1 2 0 N001 0 {To} E2 N002 0 1 0 1 .ends phaut2ord *Passe bande du 2nd ordre * E S .subckt pbande2ord 1 2 R1 0 N001 {0.5/m} C1 0 N001 {0.159155/fo} Rser=0 L1 N001 0 {0.159155/fo} Rser=0 E1 2 0 N001 0 {To} G1 0 N001 1 0 {2*m} .ends pbande2ord *Description d'un macromodele LM3915 + afficheur Bargraph 10 LED .subckt LM3915 1 2 3 A1 2 1 0 0 0 0 N011 0 SCHMITT Vt=0 Vh=0 A2 2 N001 0 0 0 0 N012 0 SCHMITT Vt=0 Vh=0 A3 2 N002 0 0 0 0 N013 0 SCHMITT Vt=0 Vh=0 A4 2 N003 0 0 0 0 N014 0 SCHMITT Vt=0 Vh=0 A5 2 N004 0 0 0 0 N020 0 SCHMITT Vt=0 Vh=0 A6 2 N005 0 0 0 0 N019 0 SCHMITT Vt=0 Vh=0 A7 2 N006 0 0 0 0 N018 0 SCHMITT Vt=0 Vh=0 A8 2 N007 0 0 0 0 N017 0 SCHMITT Vt=0 Vh=0 A9 2 N008 0 0 0 0 N015 0 SCHMITT Vt=0 Vh=0 A10 2 N009 0 0 0 0 N016 0 SCHMITT Vt=0 Vh=0 R1 N001 1 6.63k R2 N002 N001 4.69k R3 N003 N002 3.31k R4 N004 N003 2.34k R5 N005 N004 1.66k R6 N006 N005 1.17k R7 N007 N006 0.83k R8 N008 N007 0.59k R9 N009 N008 0.41k R10 N009 0 1k R11 N010 N011 1k R12 N010 N012 1k R13 N010 N013 1k R14 N010 N014 1k R15 N010 N020 1k R16 N010 N019 1k R17 N010 N018 1k R18 N010 N017 1k R19 N010 N015 1k R20 N010 N016 1k E1 3 0 N010 0 10 .ends LM3915 *Description d'un convertisseur Numérique Analogique 8 bits Unipolaire .subckt cna8unip 1 2 3 4 5 6 7 8 9 10 11 A1 8 0 0 0 0 0 N001 0 BUF E1 9 N010 N001 0 128 E2 N010 N011 N002 0 64 E3 N011 N012 N003 0 32 E4 N012 N013 N004 0 16 E5 N013 N014 N005 0 8 E6 N014 N015 N006 0 4 E7 N015 N016 N007 0 2 E8 N016 0 N008 0 1 A2 7 0 0 0 0 0 N002 0 BUF A3 6 0 0 0 0 0 N003 0 BUF A4 5 0 0 0 0 0 N004 0 BUF A5 4 0 0 0 0 0 N005 0 BUF A6 3 0 0 0 0 0 N006 0 BUF A7 2 0 0 0 0 0 N007 0 BUF A8 1 0 0 0 0 0 N008 0 BUF B1 10 0 V=V(11)*V(9)/256 .ends cna8unip *Description d'un Générateur pseudo aléatoire .subckt prbg 1 2 B1 1 0 V=rand({{time+Tb/2}/Tb}+{Nsort})>0.5 V1 2 0 PULSE(0 1 0 1n 1n {Tb/2} {Tb}) .ends prbg *Description d'un convertisseur Analogique Numérique 8 bits Unipolaire .subckt can8unip 1 2 3 4 5 6 7 8 9 B1 Vb7 0 V=V(Vb8)-V(8)*{Vfsr/2} A1 Vb8 0 0 0 0 0 8 0 SCHMITT Vt={Vfsr/2} Vh=0 A2 Vb7 0 0 0 0 0 7 0 SCHMITT Vt={Vfsr/4} Vh=0 B2 Vb6 0 V=V(Vb7)-V(7)*{Vfsr/4} A3 Vb6 0 0 0 0 0 6 0 SCHMITT Vt={Vfsr/8} Vh=0 B3 Vb5 0 V=V(Vb6)-V(6)*{Vfsr/8} A4 Vb5 0 0 0 0 0 5 0 SCHMITT Vt={Vfsr/16} Vh=0 B4 Vb4 0 V=V(Vb5)-V(5)*{Vfsr/16} A5 Vb4 0 0 0 0 0 4 0 SCHMITT Vt={Vfsr/32} Vh=0 B5 Vb3 0 V=V(Vb4)-V(4)*{Vfsr/32} A6 Vb3 0 0 0 0 0 3 0 SCHMITT Vt={Vfsr/64} Vh=0 B6 Vb2 0 V=V(Vb3)-V(3)*{Vfsr/64} A7 Vb2 0 0 0 0 0 2 0 SCHMITT Vt={Vfsr/128} Vh=0 B7 Vb1 0 V=V(Vb2)-V(2)*{Vfsr/128} A8 Vb1 0 0 0 0 0 1 0 SCHMITT Vt={Vfsr/256} Vh=0 B8 Vb8 0 V=V(9)+{Vfsr/512} .ends can8unip *Description d'un Capteur d'humidité *{{2.9461e-5*RH*RH*RH}-{0.002*RH*RH}+{0.3242*RH}+109.3175}*1e-12 .subckt capt_h1 1 2 C1 1 2 {{{2.9461e-5*RH*RH*RH}-{0.002*RH*RH}+{0.3242*RH}+109.3175}*1e-12} .ends capt_h1 * Description de la LDR MPY54C679 .subckt mpy54c679 1 2 RLDR 1 2 {1000000*pow(lux,-0.94)} .ends mpy54c679 *Description d'un Comparateur de tension * V(+) * | V(-) * | | S * | | | Vdd * | | | | Vss * | | | | | .subckt comp_tension 1 2 3 4 5 B1 N001 0 V=table(V(1)-V(2),{V(5)/100000000},V(5),{V(4)/100000000},V(4)) R1 N001 N002 50 T1 N002 0 N003 0 Td={Tdelay} Z0=50 R2 N003 0 50 B2 3 0 V=table(V(N003),{V(5)/100000000},V(5),{V(4)/100000000},V(4)) .ends comp_tension *Description d'un Comparateur de phase de type Charge Pump * IN1 * | IN2 * | | Vss * | | | S * | | | | Vdd * | | | | | .subckt chargepump 1 2 3 4 5 A1 5 0 1 3 N001 0 DN 0 DFLOP TD=10n A2 5 0 2 3 N001 0 UP 0 DFLOP TD=10n A3 0 UP 0 DN 0 0 N001 0 AND TD=10n B1 5 4 I=if(V(4)/10,0,V(DN)*{Iset}) B2 4 3 I=if(0.5-V(4),0,V(UP)*{Iset}) .ends chargepump .subckt vcodiviseur 1 2 3 A1 1 0 0 0 0 0 2 0 MODULATOR Space={fo} Mark={fo+Kvco} A2 1 0 0 0 0 0 N001 0 MODULATOR Space={fo/N} Mark={(fo+Kvco)/N} A3 N001 0 0 0 0 0 3 0 SCHMITT Vt=0 Vh=0 .ends vcodiviseur ** AVERTISSEMENT : La suite de ce fichier (en dessous) ** est une collecte sur le WEB de modèles de composants. ** Je n'en suis évidemment pas l'auteur puisque les sources sont de : ** ST Microelectronic ** National Instrument ** Analog Devices ** Maxim ** Elantec .SUBCKT HCU04 2 3 50 60 *IN=2, OUT=3, VCC=50, GND=60 MU 3 2 50 50 P1JT L=1.76u W=654U AD=5559P AS=5559P PD=1325U PS=1325U + NRD=6.116m NRS=6.116m ML 3 2 60 60 N1JT L=1.76u W=182U AD=1547P AS=1547P PD=381U PS=381U NRD=22m + NRS=22m .MODEL N1JT NMOS + LEVEL = 3 + NSS = 0.00000E+00 VTO = 8.00000E-01 TOX = 2.30000E-08 + XJ = 7.47842E-08 LD = 0.04500E-06 RSH = 65 + NSUB = 2.77696E+16 NFS = 1.26234E+11 UO = 5.82719E+02 + VMAX = 2.65458E+05 DELTA = 8.81407E-01 THETA = 5.29522E-02 + ETA = 3.52580E-02 KAPPA = 2.15314E-01 + CGSO = 6.75E-11 CGDO = 6.75E-11 CGBO = 0.00 + CJ = 3.82E-04 CJSW = 1.25E-09 PB = 1.231 + MJ = 0.396 MJSW = 0.221 TPG = 1 *+ DW =-0.46000E-06 DL =-0.42000E-06 *+ XQC = 1 * .MODEL P1JT PMOS + LEVEL = 3 + NSS = 0.00000E+00 VTO =-9.00000E-01 TOX = 2.30000E-08 + XJ = 8.32522E-08 LD = 0.03500E-06 RSH = 125 + NSUB = 1.33990E+16 NFS = 7.19190E+11 UO = 1.92014E+02 + VMAX = 4.16775E+07 DELTA = 5.63546E-01 THETA = 1.22160E-01 + ETA = 4.96427E-02 KAPPA = 5.00000E-02 + CGSO = 5.25E-11 CGDO = 5.25E-11 CGBO = 0.00 + CJ = 4.01E-04 CJSW = 1.237E-09 PB = 0.723 + MJ = 0.452 MJSW = 0.186 TPG = -1 *+ DW =-0.46000E-06 DL =-0.44000E-06 *+ XQC = 1 .ENDS HCU04 ** Standard Linear Ics Macromodels, 1999. ** CONNECTIONS : * N1 INVERTING INPUT * N2 NON-INVERTING INPUT * N3 OUTPUT * N4 POSITIVE POWER SUPPLY * N5 NEGATIVE POWER SUPPLY * .SUBCKT TS97x N1 N2 N3 N4 N5 ***************************** CCC N119 N19 16p CC30 N5 N3 130p CCIP N2 N5 1p CCIN N1 N5 1p CCPS N11 N15 100p EEIP N10 N5 N2 N5 1 EEIN N16 N5 N1 N5 1 RRAN N119 N5 260K RR28 N19 N23 6 RRAP N119 N4 260K RR2N N5 N19 10Meg RR2P N19 N4 10Meg RRIP N11 N10 8.12 RRIS N11 N15 220 RRIN N15 N16 8.12 DDOPM N19 N22 MDTH 400p DDONM N21 N19 MDTH 400p DDCOPY N504 N505 MDTH 400E-9 DDINR N15 N18 MDTH 400E-12 DDOP N19 N25 MDTH 400p DD39 N506 N504 MDTH 400E-9 DDON N24 N19 MDTH 400p DDIN N15 N14 MDTH 400p DDIP N11 N12 MDTH 400p DDINN N17 N13 MDTH 400E-12 VVOFN N13 N14 0 VVINM N5 N27 60 VVIPM N28 N4 76 VVOFP N12 N13 -1m VVCOPYP N505 0 0 VVIN N17 N5 900m VVOUT N3 N23 0 VVIP N4 N18 1.4 VVINT2 N503 0 5 VVINT1 N500 0 5 VVN N502 0 0 VVP N501 0 0 RVVN N501 0 10 RVVP N502 0 10 VVCOPYN 0 N506 0 VVOP N4 N25 1 VVON N24 N5 1.025 IIPOL N13 N5 63.6u FFGM1P N119 N5 VVOFP 1 FFGM1N N119 N5 VVOFN 1 FFCOPY N503 N504 VVOUT 1 FFCP N4 N5 VVOFP 33.8 FFIBP N2 N5 VVOFP 7.85e-3 FFIBN N5 N1 VVOFN 7.85e-3 FFCN N5 N4 VVOFN 33.8 GG2P N19 N5 N119 N5 1.92e-2 GGCONVP N500 0 N119 N4 19.38 GGCONVN N500 0 N119 N5 19.38 GG2N N19 N5 N119 N4 1.92e-2 HHONM N21 N27 VVOUT 625 HHOPN N22 N28 VVOUT 62500 .MODEL MDTH D IS=1E-8 KF=2.664234E-16 CJO=10F F2PP N19 N5 POLY(2) VVCOPYP VVP 0 0 0 0 0.5 F2PN N19 N5 POLY(2) VVCOPYP VVN 0 0 0 0 0.5 .ENDS TS97x * CLC420 Macromodel Net List--- Subcircuit Format (MMD.06) * This is a High Speed, Unity Gain Stable Monolithic Voltage * Feedback Op Amp. * Version 1, Rev. A, Date 07-29-92, By KEB * * Connections: Non-Inverting * | Inverting * | | Output * | | | +Vcc * | | | | -Vcc * | | | | | .SUBCKT CLC420 3 2 6 7 4 * * INVERTING BUFFER * R1 7 10 318 R2 11 4 214 G1 7 12 POLY(2) 7 4 7 10 -58.71U 19.57U 3.145M C1 12 0 481F Q1 11 2 12 QINP C3 2 0 500F Q2 10 2 13 QINN C2 13 0 247F G2 13 4 POLY(2) 7 4 11 4 -16.66U 5.554U 2.921M * R3 7 14 433 V1 14 15 1.62 Q3 15 12 16 QINN R5 16 21 150 Q4 17 13 16 QINP V2 17 18 1.57 R4 18 4 433 * * NON-INVERTING BUFFER * R6 7 19 437 V3 19 20 1.64 Q5 20 24 21 QINN Q6 22 26 21 QINP V4 22 23 1.62 R7 23 4 437 G3 7 24 POLY(2) 7 4 7 27 -59.29U 19.43U 3.145M C5 24 0 481F Q7 28 25 24 QINP C4 25 0 500F Q8 27 25 26 QINN C6 26 0 247F G4 26 4 POLY(2) 7 4 28 4 -17.09U 5.697U 2.921M R8 7 27 318 E1 3 25 POLY(1) 40 0 500U 2.49 G5 3 0 POLY(1) 41 0 180N 262U R9 28 4 214 * * CURRENT MIRROR GAIN BLOCKS * V5 7 29 2.10 D1 31 29 DX C7 20 31 431F C8 20 6 1.80P C9 22 6 1.80P C10 22 31 476F D2 30 31 DX V6 30 4 2.10 G6 7 31 POLY(1) 7 19 0 6.865M R10 31 0 167K C11 31 0 475F G7 31 4 POLY(1) 23 4 0 6.865M G8 7 32 POLY(1) 7 19 0 2.288M C12 32 0 1.5P G9 35 4 POLY(1) 23 4 0 2.288M C13 35 0 1.5P * * OUTPUT STAGE * D3 32 33 DY Q9 4 31 33 QOUTP1 Q10 7 31 34 QOUTN1 D4 34 35 DY Q11 7 32 36 QOUTN1 Q12 4 31 36 QOUTP1 Q13 7 31 37 QOUTN1 Q14 4 35 37 QOUTP1 Q15 7 36 38 QOUTN2 R11 38 6 10.0 C14 6 0 3.20P R12 6 39 10.0 Q16 4 37 39 QOUTP2 * * NOISE BLOCKS * R13 40 0 122 R14 40 0 122 R15 41 0 122 R16 41 0 122 * * MODELS * .Model DX D TT=200N .Model DY D IS=0.395F .Model DZ D IS=0.240F * .MODEL QINN NPN + IS =0.166F BF =3.239E+02 NF =1.000E+00 VAF=8.457E+01 + IKF=2.462E-02 ISE=2.956E-17 NE =1.197E+00 BR =3.719E+01 + NR =1.000E+00 VAR=1.696E+00 IKR=3.964E-02 ISC=1.835E-19 + NC =1.700E+00 RB =118 IRB=0.000E+00 RBM=65.1 + RC =2.645E+01 CJE=1.632E-13 VJE=7.973E-01 + MJE=4.950E-01 TF =1.948E-11 XTF=1.873E+01 VTF=2.825E+00 + ITF=5.955E-02 PTF=0.000E+00 CJC=1.720E-13 VJC=8.046E-01 + MJC=4.931E-01 XCJC=589M TR =4.212E-10 CJS=629F + MJS=0 KF =1.00P AF =1.000E+00 + FC =9.765E-01 * .MODEL QOUTN1 NPN + IS =3.954E-16 BF =3.239E+02 NF =1.000E+00 VAF=8.457E+01 + IKF=4.590E-02 ISE=5.512E-17 NE =1.197E+00 BR =3.719E+01 + NR =1.000E+00 VAR=1.696E+00 IKR=7.392E-02 ISC=3.087E-19 + NC =1.700E+00 RB =3.645E+01 IRB=0.000E+00 RBM=8.077E+00 + RC =2.702E+01 CJE=2.962E-13 VJE=7.973E-01 + MJE=4.950E-01 TF =1.904E-11 XTF=1.873E+01 VTF=2.825E+00 + ITF=1.110E-01 PTF=0.000E+00 CJC=2.846E-13 VJC=8.046E-01 + MJC=4.931E-01 XCJC=1.562E-01 TR =5.832E-10 CJS=5.015E-13 + VJS=5.723E-01 MJS=4.105E-01 KF =1.00P AF =1.000E+00 + FC =9.765E-01 * .MODEL QOUTN2 NPN + IS =9.386E-16 BF =3.239E+02 NF =1.000E+00 VAF=8.457E+01 + IKF=1.089E-01 ISE=1.308E-16 NE =1.197E+00 BR =3.960E+01 + NR =1.000E+00 VAR=1.696E+00 IKR=1.754E-01 ISC=6.787E-19 + NC =1.700E+00 RB =15.4 IRB=0.000E+00 RBM=3.4 + RC =1.857E+01 CJE=7.030E-13 VJE=7.973E-01 + MJE=4.950E-01 TF =1.874E-11 XTF=1.873E+01 VTF=2.825E+00 + ITF=2.635E-01 PTF=0.000E+00 CJC=6.172E-13 VJC=8.046E-01 + MJC=4.931E-01 XCJC=171M TR =1.069E-09 CJS=1.028E-12 + VJS=5.723E-01 MJS=4.105E-01 KF =1.00P AF =1.000E+00 + FC =9.765E-01 * .MODEL QINP PNP + IS =0.166F BF =7.165E+01 NF =1.000E+00 VAF=20.0 + IKF=1.882E-02 ISE=6.380E-16 NE =1.366E+00 BR =1.833E+01 + NR =1.000E+00 VAR=1.805E+00 IKR=1.321E-01 ISC=3.666E-18 + NC =1.634E+00 RB =78.8 IRB=0.000E+00 RBM=57.6 + RC =3.739E+01 CJE=1.588E-13 VJE=7.975E-01 + MJE=5.000E-01 TF =3.156E-11 XTF=5.386E+00 VTF=2.713E+00 + ITF=5.084E-02 PTF=0.000E+00 CJC=2.725E-13 VJC=7.130E-01 + MJC=4.200E-01 XCJC=741M TR =7.500E-11 CJS=515F + MJS=0 KF =1.00P AF =1.000E+00 + FC =8.803E-01 * .MODEL QOUTP1 PNP + IS =2.399E-16 BF =7.165E+01 NF =1.000E+00 VAF=3.439E+01 + IKF=3.509E-02 ISE=1.190E-15 NE =1.366E+00 BR =1.900E+01 + NR =1.000E+00 VAR=1.805E+00 IKR=2.464E-01 ISC=6.745E-18 + NC =1.634E+00 RB =1.542E+01 IRB=0.000E+00 RBM=4.059E+00 + RC =4.174E+01 CJE=2.962E-13 VJE=7.975E-01 + MJE=5.000E-01 TF =3.107E-11 XTF=5.386E+00 VTF=2.713E+00 + ITF=9.481E-02 PTF=0.000E+00 CJC=4.508E-13 VJC=7.130E-01 + MJC=4.200E-01 XCJC=1.562E-01 TR =9.500E-11 CJS=1.045E-12 + VJS=6.691E-01 MJS=3.950E-01 KF =1.00P AF =1.000E+00 + FC =8.803E-01 * .MODEL QOUTP2 PNP + IS =5.693E-16 BF =7.165E+01 NF =1.000E+00 VAF=3.439E+01 + IKF=8.328E-02 ISE=2.824E-15 NE =1.366E+00 BR =1.948E+01 + NR =1.000E+00 VAR=1.805E+00 IKR=5.848E-01 ISC=1.586E-17 + NC =1.634E+00 RB =6.5 IRB=0.000E+00 RBM=1.7 + RC =1.767E+01 CJE=7.030E-13 VJE=7.975E-01 + MJE=5.000E-01 TF =3.073E-11 XTF=5.386E+00 VTF=2.713E+00 + ITF=2.250E-01 PTF=0.000E+00 CJC=9.776E-13 VJC=7.130E-01 + MJC=4.200E-01 XCJC=171M TR =1.450E-10 CJS=1.637E-12 + VJS=6.691E-01 MJS=3.950E-01 KF =1.00P AF =1.000E+00 + FC =8.803E-01 * .ENDS CLC420 ** Macanal, Analog macromodels generator, v.1.0 ** J. REMY, SGS THOMSON, ANACA Grenoble, Aug. 1992. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TL082 1 2 3 4 5 ********************************************************** .MODEL MDTH D IS=1E-8 KF=5.306587E-14 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 1.130435E+00 RIN 15 16 1.130435E+00 RIS 11 15 2.476554E-01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 2.300000E-04 CPS 11 15 4.091333E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 3.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.000000E+00 FCP 4 5 VOFP 6.096957E+00 FCN 5 4 VOFN 6.096957E+00 * AMPLIFYING STAGE FIP 5 19 VOFP 8.217391E+02 FIN 5 19 VOFN 8.217391E+02 RG1 19 5 1.112645E+06 RG2 19 4 1.112645E+06 CC 19 29 1.300000E-08 HZTP 30 29 VOFP 7.743183E+02 HZTN 5 30 VOFN 7.743183E+02 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3.750000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 3.750000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 9.384786E+01 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 3.259753E+00 DON 24 19 MDTH 400E-12 VON 24 5 3.259753E+00 .ENDS TL082 * AD603 SPICE Macro-model Rev. A, 12/94 * ARG / PMI * * Copyright 1993 by Analog Devices * * Refer to "README.DOC" file for License Statement. Use of * this model indicates your acceptance of the terms and pro- * visions in the License Statement. * * Node assignments * vinp * | common * | | vpos * | | | vneg * | | | | vout * | | | | | gpos * | | | | | | gneg * | | | | | | | fdbk * | | | | | | | | .SUBCKT AD603 3 2 99 50 48 40 41 49 * * INPUT STAGE * Q1A 1 3 21 QN Q1B 4 5 21 QN Q2A 1 14 22 QN Q2B 4 5 22 QN Q3A 1 15 23 QN Q3B 4 5 23 QN Q4A 1 16 24 QN Q4B 4 5 24 QN Q5A 1 17 25 QN Q5B 4 5 25 QN Q6A 1 18 26 QN Q6B 4 5 26 QN Q7A 1 19 27 QN Q7B 4 5 27 QN Q8A 1 20 28 QN Q8B 4 5 28 QN RT 3 2 500 CIN 3 2 2E-12 RL1 3 14 62.5 RL2 14 2 125 RL3 14 15 62.5 RL4 15 2 125 RL5 15 16 62.5 RL6 16 2 125 RL7 16 17 62.5 RL8 17 2 125 RL9 17 18 62.5 RL10 18 2 125 RL11 18 19 62.5 RL12 19 2 125 RL13 19 20 62.5 RL14 20 2 62.5 VOS 11 5 0.1E-3 IB1 99 7 400E-6 IB2 99 29 200E-6 IB3 99 30 200E-6 IB4 99 31 200E-6 IB5 99 32 200E-6 IB6 99 33 200E-6 IB7 99 34 200E-6 IB8 99 13 400E-6 Q100 50 51 7 QP Q101 50 52 13 QP R100 51 50 950 R101 52 50 950 G10 50 51 POLY(1) (40,41) 2E-3 3.5E-3 G11 50 52 POLY(1) (41,40) 2E-3 3.5E-3 RB1 7 29 700 RB2 29 30 700 RB3 30 31 700 RB4 31 32 700 RB5 32 33 700 RB6 33 34 700 RB7 34 13 700 Q9 21 7 6 QN Q10 22 29 6 QN Q11 23 30 6 QN Q12 24 31 6 QN Q13 25 32 6 QN Q14 26 33 6 QN Q15 27 34 6 QN Q16 28 13 6 QN Q17 61 62 1 QN Q18 64 62 4 QN R102 61 62 12E3 R103 64 62 12E3 RC 40 41 50E6 CCTL 40 41 3.183E-15 IGP 40 0 205E-9 IGN 41 0 195E-9 I1 6 50 2.5E-3 R1 99 61 2E3 R2 99 64 2E3 * * 1ST GAIN STAGE * EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5 G1 98 8 (64,61) 0.84 R5 8 98 1 E1 99 9 POLY(1) (99,98) -0.535 1 E2 10 50 POLY(1) (98,50) -0.535 1 D1 8 9 DX D2 10 8 DX * * 2ND GAIN STAGE AND DOMINANT POLE AT 317KHZ * G2 98 58 (8,98) 1.667E-3 R6 58 98 55.2273E3 C1 58 98 9.091E-12 V1 99 59 2.7 V2 60 50 2.7 D3 58 59 DX D4 60 58 DX * * POLE AT 250MHZ * G5 98 35 (58,98) 1 R11 35 98 1 C2 35 98 0.637E-9 * * POLE AT 300MHZ * G6 98 36 (35,98) 1 R12 36 98 1 C4 36 98 0.531E-9 * * POLE AT 300MHZ * G7 98 37 (36,98) 1 R13 37 98 1 C5 37 98 0.531E-9 * * POLE AT 300MHZ * G3 98 45 (37,98) 1E-3 R10 45 98 1E3 C3 45 98 0.531E-12 * * OUTPUT STAGE * GSY 99 50 POLY(1) (99,50) -16E-3 1.6E-3 FSY 99 50 POLY(2) V7 V8 8.01E-3 1 1 RO1 99 48 4 RO2 48 50 4 GO1 48 99 (99,45) 250E-3 GO2 50 48 (45,50) 250E-3 V4 48 46 -0.7 V5 47 48 -0.7 D5 46 45 DX D6 45 47 DX G4 98 44 (48,45) 250E-3 D7 44 42 DX D8 43 44 DX V7 42 98 0 V8 98 43 0 RF1 48 49 6.44E3 RF2 11 49 694 RIN 11 2 20 .MODEL DX D(IS=1E-16) .MODEL QN NPN(BF=200 IS=1E-14 RB=20 KF=1E-16 AF=1) .MODEL QP PNP(BF=1000 IS=1E-14) .ENDS AD603 * Connections: input * | +Vsupply * | | -Vsupply * | | | output * | | | | .subckt EL2002 2 1 4 7 * Input Stage e1 10 0 2 0 1.0 r1 10 0 1K rh 10 11 150 ch 11 0 2pF rc 11 12 100 cc 12 0 3pF e2 13 0 12 0 1.0 * Output Stage q1 4 13 14 qp q2 1 13 15 qn q3 1 14 16 qn q4 4 15 19 qp r2 16 7 1 r3 19 7 1 i1 1 14 2mA i2 15 4 2mA * Bias Current iina 2 0 3uA * Models .model qn npn(is=5E-15 bf=150 rb=200 ptf=45 tf=0.1nS) .model qp pnp(is=5E-15 bf=150 rb=200 ptf=45 tf=0.1nS) .ends EL2002 * TLC3702 VOLTAGE COMPARATOR "MACROMODEL" SUBCIRCUIT * CREATED USING PARTS VERSION 4.03 ON 03/14/90 AT 10:09 * REV (N/A) * NOTE: COMPONENTS ADDED TO SIMULATE ACTIVE PULL-UP * CONNECTIONS: NON-INVERTING INPUT * | INVERTING INPUT * | | POSITIVE POWER SUPPLY * | | | NEGATIVE POWER SUPPLY * | | | | OUTPUT * | | | | | .SUBCKT TLC3702 1 2 3 4 5 * F1 9 3 V1 1 FOUT 30 5 POLY(1) (V1) 4E-3 -40 ;THESE COMPONENTS EO1 30 0 POLY(1) (3,0) -.75 1 ;ADDED TO SIMULATE DO1 5 30 DX ;ACTIVE PULL-UP IEE 3 7 DC 100.0E-6 VI1 21 1 DC .75 VI2 22 2 DC .75 Q1 9 21 7 QIN Q2 8 22 7 QIN Q3 9 8 4 QMO Q4 8 8 4 QMI .MODEL QIN PNP(IS=800.0E-18 BF=10.00E6) .MODEL QMI NPN(IS=800.0E-18 BF=1002) .MODEL QMO NPN(IS=800.0E-18 BF=1000 CJC=1E-15 TR=807.4E-9) E1 10 4 9 4 1 V1 10 11 DC 0 Q5 5 11 4 QOC .MODEL QOC NPN(IS=800.0E-18 BF=1.810E3 CJC=1E-15 TF=1.357E-9 TR=1.129E-6) DP 4 3 DX RP 3 4 -70E3 .MODEL DX D(IS=800.0E-18) * .ENDS ** Macanal, Analog macromodels generator, v.1.0 ** J. REMY, SGS THOMSON, ANACA Grenoble, Aug. 1992. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS3702 1 2 3 4 5 ********************************************************** .MODEL MDTH D IS=1E-11 KF=1.050321E-32 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 0 2 0 1 EIN 16 0 1 0 1 RIP 10 11 6.500000E+01 RIN 15 16 6.500000E+01 RIS 11 15 1.939046E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 IPOL 13 0 100E-06 CPS 11 15 8.16E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.200000E+00 FCP 4 5 VOFP 0.00 FCN 5 4 VOFN 0.00 FIBP 2 0 VOFN 2.000000E-08 FIBN 0 1 VOFP 2.000000E-08 * AMPLIFYING STAGE RG1 5 19 2.8E+05 RG2 4 19 2.8E+05 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3500 VIPM 28 4 150 HONM 21 27 VOUT 3000 VINM 5 27 150 DOP 19 25 MDTH 400E-12 VOP 4 25 1.097 DON 24 19 MDTH 400E-12 VON 24 5 1.097 FIP 0 19 VOFP 104 FIN 0 19 VOFN 104 EOUT 26 23 19 5 1 VOUT 23 5 0V ROUT 26 3 62.5 .ENDS **///////////////////////////////////////////////// *LMC6762A CMOS Comparator Macro-Model *///////////////////////////////////////////////// * * connections: non-inverting input * | inverting input * | | output * | | | positive power supply * | | | | negative power supply * | | | | | * | | | | | .SUBCKT LMC6762 3 2 6 4 5 * *Features *Low Power Consumption *Wide Range of Supply *4us Propagation delay at 100mv Overdrive * *----- input satge ----- RINB 2 18 1000 RINA 3 19 1000 DIN1 5 18 DMOD2 DIN2 18 4 DMOD2 DIN3 5 19 DMOD2 DIN4 19 4 DMOD2 FIN1 18 5 VTEMP 0.75 FIN2 19 5 VTEMP 1.25 * Input Bias Currents CIN1 2 10 1e-12 CIN2 3 10 1e-12 * Common Mode Input Capacitance RD1 18 11 5e+10 RD2 19 11 5e+10 * Diff. Input Resistance RCM 11 10 9.975e+12 * Common Mode Input Resistance *----- supply current ------ EXX 10 5 17 5 1.0 EEE 10 50 17 5 1.0 ECC 40 10 4 17 1.0 RAA 4 17 100MEG RBB 17 5 100MEG RSLOPE 4 5 1e+12 * Slope of Supp. Curr. vs. Supp. Volt. GPWR 4 5 26 10 0.000006 * Quiescent Supply Current *----- VOS bridge ----- EOX 120 10 31 32 2.0 RCX 120 121 1K RDX 121 10 1K RBX 120 122 1K RAX 122 10 MRAX 1.009000e+03 * Input Offset Voltage .MODEL MRAX RES (TC1=0) *----- delay stage ----- RX8 40 815 10K RY8 815 50 5K RBA8 815 50 5K RBB8 815 811 1K EIN8 810 811 3 2 -1 EVOSS 814 811 122 121 1 *=== RCA8 40 812 1K RCB8 40 813 1K DDA8 812 813 DDEL1 DDB8 813 812 DDEL2 * Delay Time Settings CDB8 813 812 10P RCDB8 813 812 1MEG FSET8 809 50 VSENS1 1 CCC 809 50 5P QDN1 812 810 809 NPNX QDN2 813 814 809 NPNX .MODEL NPNX NPN (BF=100 RE=25) .MODEL DDEL1 D (IS=1e-6 TT=5.2U N=1.4 ) .MODEL DDEL2 D (IS=4e-6 TT=2.5U N=0.8 ) GDM 10 57 812 813 1 *----- start-up ----- ISET 10 24 1e-3 DA1 24 23 DMOD1 RBAL 23 22 1000 ESUPP 22 21 4 5 1.0 VOFF 21 10 -1.25 DA2 24 25 DMOD1 VSENS1 25 26 DC 0 RSET 26 10 1K CSET 26 10 1e-10 *----- temp. Coef. ----- FSET 10 31 VSENS1 1.0 RVOS 31 32 1K RIB 32 33 MRIB 1K .MODEL MRIB RES (TC1=0.0036363) RISC 33 34 MRISC 1K .MODEL MRISC RES (TC1=0) R001 34 10 1K *----- CMRR ----- ECMR 38 10 11 10 1.0 VCMX 38 39 DC 0 RCM2 41 10 1MEG RCM1 39 41 1778.28 CCM 41 10 1.59155e-10 * CMRR vs. Freq. *----- PSRR ----- EPSR 42 10 4 10 1.0 CDC1 43 42 10U VPSX 43 44 DC 0 RPSR2 45 10 1MEG RPSR1 44 45 1000 CPSR 45 10 1.59155e-10 * PSRR vs. Freq. *----- IB temp. ----- FTEMP 10 27 VSENS1 1.0 ETEMP 27 28 32 33 0.6184 DTA 27 10 DMOD2 DTB 28 29 DMOD2 VTEMP 29 10 DC 0 *----- Out Curr. sense & set ----- FX 10 93 VOX 1.0 DFX1 93 91 DMOD1 VFX1 91 10 DC 0 DFX2 92 93 DMOD1 VFX2 10 92 DC 0 FPX 4 10 VFX1 1.0 FNX 10 5 VFX2 1.0 *----- comm. input sense ----- DCX1 98 97 DMOD1 DCX2 95 94 DMOD1 RCX1 99 98 100 RCX2 94 99 100 VCXX 99 96 DC 0 ECMX 96 10 11 10 1.0 ECMP 40 97 26 10 0.2 ECMN 95 50 26 10 0.1 *----- inter-stage ----- GOS 10 57 122 121 1.0 GOSD 10 57 11 0 0.14m FCMR 10 57 VCMX 1200 * Low Freq. CMRR FPSR 10 57 VPSX 1450 * Low Freq. PSRR FCXX 57 10 VCXX 100 RDM 57 10 72552 C2 57 10 1.09683e-14 DLIM1 52 57 DMOD1 DLIM2 57 51 DMOD1 ELIMP 51 10 26 10 129.3 ELIMN 10 52 26 10 199.3 * G2 58 10 57 10 1.0e-06 R2 58 10 13.7832 GO2 59 10 58 10 18 * Avol and Slew-Rate Settings RO2 59 10 1K DCLMP2 59 40 DMOD1 DCLMP1 50 59 DMOD1 *----- output stage ----- GO3 10 71 59 10 1 RO3 71 10 1 RDN2 710 71 100 RDP 720 72 100 DDN1 73 74 DMOD1 DDN2 73 710 DMOD1 RNO 78 81 1 RPO 79 81 1 DDP1 75 72 DMOD1 DDP2 71 720 DMOD1 C1 58 59 1e-10 VOOP 40 76 DC 0 VOON 77 50 DC 0 QNO 76 73 78 NPN1 QNP 77 72 79 PNP1 VOX 86 6 DC 0 RNT 76 81 100MEG RPT 81 77 1MEG EPOS 40 74 26 10 0.05 ENEG 75 50 26 10 0.04 * Output Voltage Swing Settings GSOURCE 74 73 33 34 0.00032 GSINK 72 75 33 34 0.00045 * Output Current Settings ROO 81 86 20 .MODEL DMOD1 D .MODEL DMOD2 D (IS=1e-17) .MODEL NPN1 NPN (BF=100 IS=1e-15) .MODEL PNP1 PNP (BF=100 IS=1e-15) RA 73 40 10e6 RB 72 50 10e6 RC 72 73 10e6 RD 10 57 10e6 RE 24 10 10e6 RF 93 10 10e6 * .ENDS *////////////////////////////////////////////////////////////////////// * (C) National Semiconductor, Inc. * Models developed and under copyright by: * National Semiconductor, Inc. *///////////////////////////////////////////////////////////////////// * Legal Notice: This material is intended for free software support. * The file may be copied, and distributed; however, reselling the * material is illegal *//////////////////////////////////////////////////////////////////// * For ordering or technical information on these models, contact: * National Semiconductor's Customer Response Center * 7:00 A.M.--7:00 P.M. U.S. Central Time * (800) 272-9959 * For Applications support, contact the Internet address: * amps-apps@galaxy.nsc.com * \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ * LM13700 Dual Operational Transconductance Amplifier * \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ * * Amplifier Bias Input * | Diode Bias * | | Positive Input * | | | Negative Input * | | | | Output * | | | | | Negative power supply * | | | | | | Buffer Input * | | | | | | | Buffer Output * | | | | | | | | Positive power supply * | | | | | | | | | .SUBCKT LM13700 1 2 3 4 5 6 7 8 11 * * Features: * gm adjustable over 6 decades. * Excellent gm linearity. * Linearizing diodes. * Wide supply range of +/-2V to +/-22V. * * Note: This model is single-pole in nature and over-estimates * AC bandwidth and phase margin (stability) by over 2X. * Although refinement may be possible in the future, please * use benchtesting to finalize AC circuit design. * * Note: Model is for single device only and simulated * supply current is 1/2 of total device current. * ****************************************************** * C1 6 4 4.8P C2 3 6 4.8P * Output capacitor C3 5 6 6.26P D1 2 4 DX D2 2 3 DX D3 11 21 DX D4 21 22 DX D5 1 26 DX D6 26 27 DX D7 5 29 DX D8 28 5 DX D10 31 25 DX * Clamp for -CMR D11 28 25 DX * Ios source F1 4 3 POLY(1) V6 1E-10 5.129E-2 -1.189E4 1.123E9 F2 11 5 V2 1.022 F3 25 6 V3 1.0 F4 5 6 V1 1.022 * Output impedance F5 5 0 POLY(2) V3 V7 0 0 0 0 1 G1 0 33 5 0 .55E-3 I1 11 6 300U Q1 24 32 31 QX1 Q2 23 3 31 QX2 Q3 11 7 30 QZ Q4 11 30 8 QY V1 22 24 0V V2 22 23 0V V3 27 6 0V V4 11 29 1.4 V5 28 6 1.2 V6 4 32 0V V7 33 0 0V .MODEL QX1 NPN (IS=5E-16 BF=200 NE=1.15 ISE=.63E-16 IKF=1E-2) .MODEL QX2 NPN (IS=5.125E-16 BF=200 NE=1.15 ISE=.63E-16 IKF=1E-2) .MODEL QY NPN (IS=6E-15 BF=50) .MODEL QZ NPN (IS=5E-16 BF=266) .MODEL DX D (IS=5E-16) .ENDS LM13700 *$ .SUBCKT BAT85 1 2 * The Resistor R1 does not reflect a * physical device. Instead it improves * modeling in the reverse mode of * operation. * R1 1 2 3.6E+07 D1 1 2 BAT85 .MODEL BAT85 D( + IS = 2.117E-07 + N = 1.016 + BV = 36 + IBV = 1.196E-06 + RS = 2.637 + CJO = 1.114E-11 + VJ = 0.2013 + M = 0.3868 + FC = 0 + TT = 0 + EG = 0.69 + XTI = 2) .ENDS BAT85