Objectifs de l'UE

Au terme de cette UE, les étudiants seront capables de :

- Décrire le comportement d'un système linéaire avec des équations différentielles et des équations de récurrences
- Construire une structure complète de régulation continue et/ou numérique avec anticipation et régulation
- Analyser le comportement d'un système linéaire continu ou échantillonné en boucle ouverte et en boucle fermée
- Concevoir un système de commande continu et/ou discret et de le mettre en œuvre sur un composant programmable
- Choisir un composant programmable pour une application donnée
- Décrire un système en VHDL à des fins de conception

Description des ECUE

Systèmes continus et linéaires :

- 1) Introduction : Définition de la notion de systèmes en automatique. Présentation des concepts de modélisation-identification, commande, performances et robustesse au travers d'exemples physiques. Les systèmes continus linéaires et leur représentation
- 2) Les outils de base dans le contexte de la commande : 1er et 2e ordre, intégrateur, signaux de référence, boucle ouverte et fermée, stabilité, performances temporelles, marge de robustesses (gain, phase, retard)
- 3) Réglage de correcteur sans modèle : P, PI, PID avec les méthodes de Ziegler-Nichols et Tyreus-Luybens ainsi que les améliorations possibles
- 4) Réglage de correcteur avec modèle : P, PI, PID, Avance de Phase pour répondre à un cahier des charges précis, prise en compte des saturations de l'actionneur
- 5) Commande à modèle interne : prédicteur de Smith, simplification de pôles et zéros pour obtenir un comportement souhaité en pour le système en BF
- TD : Utilisation des diverses représentations des systèmes continus linéaires (temporelle, fréquentielle) pour analyser leur comportement; Mise en œuvre des différents type de correcteur vus en cours sur des systèmes continus linéaires sous forme de fonction de transfert
- TP: Etude d'un asservissement de position angulaire; Etude d'une régulation de température avec retard pur; Etude d'un asservissement de position sur un système électromagnétique

Automatique échantillonnée :

- 1) Introduction : structure et éléments composants un système de commande numérique. Classification des signaux continus, échantillonnés, discrets
- 2) Echantillonnage de signaux et systèmes continus
- 3) Stabilité des systèmes discrets
- 4) Echantillonnage de correcteurs continus
- 5) Synthèse de correcteurs numériques avec la méthode du modèle

TD : Etude des approximations de l'opérateur de Laplace; Echantillonnage de correcteurs continus; Synthèse de correcteurs par la méthode du modèle

TP: Etude d'une lévitation magnétique, Etude d'un système bille sur rail, Etude d'un système de torsion

Synthèse Logique:

- 1) Logique programmable (définition, méthodologie et outils de développement)
- 2) VHDL pour la synthèse des circuits logiques programmables
- 3) Architectures et technologies des circuits logiques programmables (FPGA, CPLD)
- 4) System on Chip et co-design (une introduction...)
- 5) Exemples d'applications de la logique programmable à la mécatronique

Pré-requis

Transformée de Laplace, Transformée en Z, Equation différentielles, Equations de récurrences, Notions de logique (systèmes combinatoires et séquentiels)

Bibliographie

BORNE Pierre, SUEUR Christophe, VANHEEGHE Philippe, Automatique des systèmes échantillonnés, Edition Technip, Décembre 2009,

Logique Programmable, L. Dutrieux et D. Demigny, EYROLLES

VHDL for programmable logic, K. Skahill, ADDISON-WESLEY

VHDL for logic synthesis, A. Rushton, WILEY