

Examen

Exercices de préparation

Conversion de puissance (1)

Rappeler la formule permettant d'exprimer une puissance en dBm et remplir le tableau suivant :

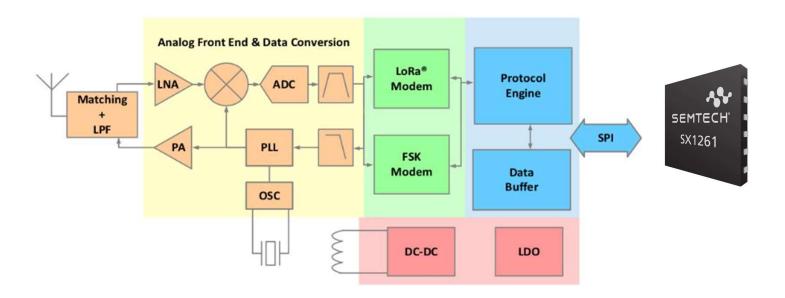
Puissance (W)	Puissance (dBm)
1 W	
1 mW	
20 μW	
40 nW	
250 pW	
14 fW *	

* f : femto

Conversion de puissance (2)

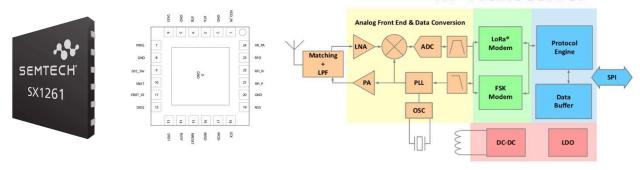
- Rappeler la formule permettant d'exprimer une puissance en W à partir d'une puissance exprimée en dBm
- Remplir le tableau suivant :

Puissance (dbm)	Puissance (W)
14 dBm	
-65 dBm	
-110 dBm	
-113 dBm	
-116 dBm	
- 174 dBm	



SEMTECH – CHIP LoRa

SX1261/2 Long Range, Low Power, sub-GHz RF Transceiver



SX1261/2 Long Range, Low Power, sub-GHz RF Transceiver

Question: En supposant que ce transmetteur LoRa émette pendant une durée correspondant à un duty cycle de 1%, déterminer la configuration permettant la meilleure autonomie énergétique en exploitant la datasheet → Argumenter le choix par des calculs comparatifs pour une même puissance d'émission de 14 dBm.

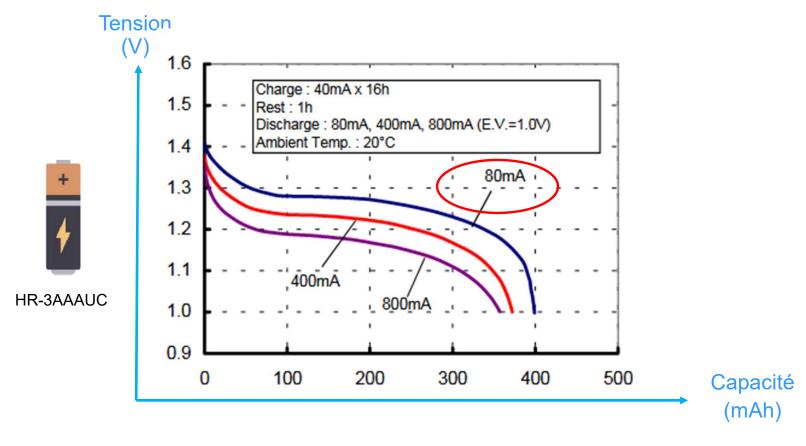
Remarques : - d'abord identifier les 2 bandes de fréquences d'émission possibles et les 2 tensions d'alimentation possibles - on suppose que le transmetteur bascule en mode OFF lorsqu'il n'émet pas.

SEMTECH SX1261 – Spécifications

Symbol	Mode	Conditions	Min	Тур	Max	Unit
IDDOFF	OFF mode (SLEEP mode with cold start ¹)	All blocks off	- 160		-	nA
IDDSL	SLEEP mode (SLEEP mode with warm start ²)	Configuration retained - Configuration retained + RC64k -		600 1.2	-	nA μA
IDDSBR	STDBY_RC mode	RC13M, XOSC OFF	-	0.6	-	mA
IDDSBX	STDBY_XOSC mode	XOSC ON	-	0.8	-	mA
IDDFS	Synthesizer mode	DC-DC mode used LDO mode used		2.1 3.55	-	mA mA
IDDRX	Receive mode DC-DC mode used	FSK 4.8 kb/s LoRa® 125 kHz Rx Boosted ³ , FSK 4.8 kb/s Rx Boosted, LoRa® 125 kHz LoRa® 125 kHz, VBAT = 1.8 V	-	4.2 4.6 4.8 5.3		mA mA mA mA
	Receive mode LDO mode used	FSK 4.8 kb/s LoRa® 125 kHz Rx Boosted, FSK 4.8 kb/s Rx Boosted, LoRa® 125 kHz	-	8 8.8 9.3 10.1	-	mA mA mA

SEMTECH SX1261 – Spécifications

Symbol	Frequency Band	PA Match / Condition	Power Output	Typical	Unit
868/915 MHz IDDTX SX1261 ¹ 434/490 MHz			+14 dBm, VBAT = 3.3 V	25.5	mA
		. 14 - 10	+10 dBm VBAT = 3.3 V	18	mA
		+14 dBm	+14 dBm, VBAT = 1.8 V	48	mA
			+10 dBm, VBAT = 1.8 V	34	mA
			+15 dBm, VBAT = 3.3 V	32.5	mA
			+10 dBm VBAT = 3.3 V	15	mA
		+14 dBm / optimal settings	+15 dBm, VBAT = 1.8 V	60	mA
			+10 dBm, VBAT = 1.8 V	29	mA
			+15 dBm, VBAT = 3.3 V	25.5	mA
			+14 dBm, VBAT = 3.3 V	21	mA
	42.4/400 MUI-	. 14 -10	+10 dBm, VBAT = 3.3 V	14.5	mA
	434/490 MHZ	+14 dBm	+15 dBm, VBAT = 1.8 V	46.5	mA
			+14 dBm, VBAT = 1.8 V	39	mA
			+10 dBm, VBAT = 1.8 V	26	mA



SEMTECH SX1261 – Batterie

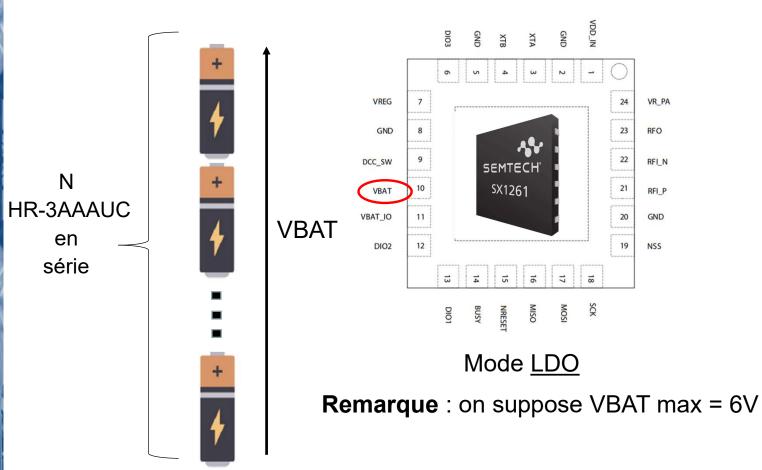
Les N piles à utiliser sont des HR 3AAAUC.

Remarque : - on considère uniquement le cycle de décharge correspondant à 80 mA pour nos calculs.

VR_PA

RFO

RFI_N

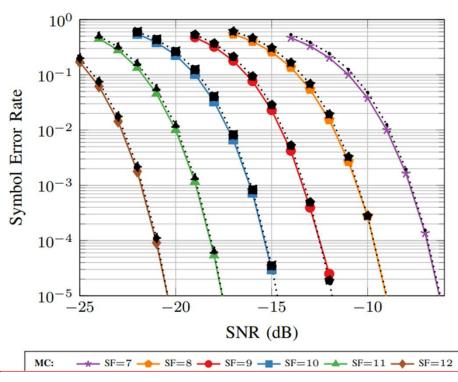

RFI_P

GND

NSS

20

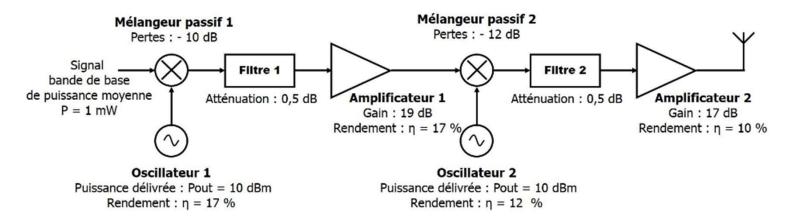
SEMTECH SX1261 – Spécifications



LoRa - Bilans de liaison

Question: On souhaite réaliser une transmission LoRa à 868 MHz entre deux systèmes équipés d'antennes dipôle (Puissance d'émission = 14 dBm; facteur de bruit 7 dB) sur une distance *théorique* de 700 km avec une taux d'erreur par symbole meilleur que 10⁻⁵.

Quelles sont les configurations viables du spreading Factor SF? Quel est le meilleur choix? Argumenter



Consommation énergétique

A partir des paramètres mentionnés :

- 1 / Déterminez la puissance consommée pour chaque module actif
- 2 / En déduire la puissance totale consommée par ce système d'émission.
- 3 / Quel est ce type d'architecture et quel est son inconvénient ?
- 4 / La tension d'alimentation est égale à 1,2 V. Déterminez le courant moyen consommé pour chaque module actif.
- 5 / Cet émetteur est relié à une batterie de capacité égale à 2400 mA.heure Déterminez le nombre d'heures d'autonomie énergétique de cet émetteur.