

FOURTH EDITION

I. Scott MacKenzie
York University

Raphael C.-W. Phan
Swinburne University of Technology

(Sarawak Campus)

Pearson Education International

If you purchased this book within the United States or Canada you should be aware that it has been

wrongfully imported without the approval of the Publisher or the Author.

Editor-in-Chief: Vernon Anthony
Production Editor: Rex Davidson
Design Coordinator: Diane Ernsberger
Editorial Assistant: Lara Dimmick
Cover Designer: Candace Rowley
Cover art: Getty Images
Production Manager: Matt Ottenweller
Senior Marketing Manager: Ben Leonard
Marketing Assistant: Les Roberts
Senior Marketing Coordinator: Liz Farrell

This book was set in Times Roman by Laserwords Pte. Ltd. It was printed and bound by R. R. Donnelley & Sons
Company. The cover was printed by Coral Graphic Services, Inc.

Copyright C 2007, 1999, 1995, 1992 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458. Pearson
Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright
and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding pennission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall ism a trademark of Pearson Education, Inc.
Pearson® is a registered trademark of Pearson plc
Prentice Hall® is a registered trademark of Pearson Education, Inc.

Pearson Education LTD.

Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd

Pearson Education North Asia Ltd

Pearson Education Canada, Ltd.

Pearson Educacon de Mexico, S.A. de C.V.

Pearson Education -- Japan
Pearson Education Malaysia, Pte. Ltd

Pearson Education, Upper Saddle River, New Jersey
1 0 9 8 7 6 5 4 3 2 1

ISBN 0-13-205975-4

This book examines the hardware and software features of the MCS-51 family of micro-
controllers. The intended audience is college or university students of electronics,
computer technology, and electrical or computer engineering, or practicing technicians or
engineers interested in learning about microcontrollers.

The means to effectively fulfill that audience's informational needs were tested and
refined in the development of this book. In its prototype form, The 8051 Microcontroller
was the basis of a fifth-semester course for college students in computer engineering. As
detailed in Chapter 11, students built an 8051 single-board computer as part of this course.
That computer, in turn, has been used as the target system for a final, sixth-semester
"project" course in which students design, implement, and document a "product"
controlled by the 8051 microcontroller and incorporating original software and hardware.

Because the 8051—like all microcontrollers—contains a high degree of functional-
ity, the book emphasizes architecture and programming rather than electrical details. The
software topics are delivered in the context of Intel's assembler (ASM51) and linker/
locator (RL51).

Four new chapters are included in this edition, and the main additional feature is the
information about using 8051 C programming as an alternative to the assembly language
used in earlier editions. Programming in C allows for structured programs and is
especially useful in coding big and complex 8051-based projects.

All examples are annotated to assist both the student and the teacher. The examples
begin by stating a problem followed by a straightforward solution. Then, following the so-
lution, there is a discussion that explores the inner workings of the problem and the
solution. The approach is to explain and to elaborate, taking into account different
perspectives that enter into the example.

It is our view that courses on microprocessors or microcontrollers are inherently
more difficult to deliver than courses in, for example, digital systems, because a linear
sequence of topics is hard to devise. The very first program that is demonstrated to
students brings with it significant assumptions, such as a knowledge of the CPU's
programming model and addressing modes, the distinction between an address and the
content of an address, and so on. For this reason, a course based on this book should not
attempt to follow strictly the sequence presented. Chapter 1 is a good starting point,
however. It serves as a general introduction to microcontrollers, with particular emphasis
on the distinctions between microcontrollers and microprocessors.

iii

iv | PREFACE

Chapter 2 introduces the hardware architecture of the 8051 microcontroller and its coun-
terparts that form the MCS-51 family. Concise examples are presented using short sequences
of instructions. Instructors should be prepared at this point to introduce, in parallel, topics from
Chapters 3 and 7 and Appendices A and C to support the requisite software knowledge in these
examples. Appendix A is particularly valuable, since it contains in a single figure the entire
8051 instruction set.

Chapter 3 introduces the instruction set, beginning with definitions of the 8051's
addressing modes. The instruction set has convenient categories of instructions (data
transfer, branch, etc.) that facilitate a step-wise presentation. Numerous brief examples
demonstrate each addressing mode and each type of instruction.

Chapters 4, 5, and 6 progress through the 8051's on-chip features, beginning with the
timers, advancing to the serial port (which requires a timer as a baud rate generator), and
concluding with interrupts. The examples in these chapters are longer and more complex
than those presented earlier. Instructors are wise not to rush into these chapters; it is
essential that students gain solid understanding of the 8051's hardware architecture and
instruction set before advancing to these topics.

Many of the topics in Chapter 7 will be covered, by necessity, in progressing through
the first six chapters. Nevertheless, this chapter is perhaps the most important for devel-
oping in students the potential to undertake large-scale projects. Advanced topics such as
assemble-time expression evaluation, modular programming, linking and locating, and
macro programming will be a significant challenge for many students. At this point, the
importance of hands-on experience cannot be overemphasized. Students should be encour-
aged to experiment by entering the examples in the chapter into the computer and
observing the output and error messages provided by ASM51, RL51, and the object-to-hex
conversion utility (OH).

Chapter 8 lays the foundation for C programming the 8051. It highlights differences
between this higher-level language compared to assembly language, and differences be-
tween conventional C language for computer systems and C for an embedded microcon-
troller such as the 8051.

Some advanced topics relating to programming methods, style, and the development
environment are presented in Chapters 9 and 10. These chapters address larger, more con-
ceptual topics important in professional development environments.

Chapter 11 presents several design examples incorporating selected hardware with
supporting software. The software is fully annotated and is the real focus in these examples.
The fourth edition includes several additional interfaces: a liquid crystal display (LCD), the
8255, an RS-232 serial interface, a Centronics parallel interface, sensors, relays, and a stepper
motor. One of the designs in Chapter 11 is the SBC-51 - the 8051 single-board computer. The
SBC-5l can form the basis of a course on the 8051 microcontroller. A short monitor program
is included (see Appendix G), which is sufficient to get "up and running." A development
environment also requires a host computer, which doubles as a dumb terminal for controlling
the SBC-5l after programs have been downloaded for execution.

Many dozens of students have wire-wrapped prototype versions of the SBC during
years that Scott has taught 8051-based courses to computer engineering students. Raphael
also thanks his Microprocessor Fundamentals, Microprocessor Applications, and Embedded

PREFACE | v

Microcontrollers students, who enthusiastically undertook assignments and projects based on the 8051.
There is also a new chapter, Chapter 12, on the design and interface examples given in Chapter 11,

but with the solutions in C rather than in assembly language.
Chapter 13 presents some more advanced examples of 8051 projects for students and concentrates

on the discussion of design choices and the importance of pseudo code in the design process, prior to the
actual coding.

Chapter 14 talks briefly about some 8051 derivative devices that are descendants of the 8051 but
with enhancements such as increases in speed and memory size, additional built-in peripherals, and
enhanced network capabilities and security mechanisms.

Also worth mentioning is the treatment of smart cards and data security in this edition, notably in
Chapters 12, 13, and 14, and in Appendix J. This information is included because of the increasing
popularity of smart cards using 8-bit microcontrollers such as the 8051 to run security software to protect
confidential information.

The book makes extensive use of and builds on Intel's literature on the MCS-51 devices. In particular,
Appendix C contains the definitions of all 8051 instructions, and Appendix E contains the 8051 data sheet.
Intel's cooperation is gratefully acknowledged.

All the 8051 C examples in this edition have been compiled, debugged, and tested with Keil's
,µision2 IDE, available for download at http://www.keil.com. We also thank the following for their review
and invaluable comments, criticism, and suggestions: Dwight Egbert, University of Nevada; Marty Kaliski,
Cal Polytech State University; Claude Kansaku, Oregon Institute of Technology; and Ron Tinkham, Santa
Fe Community College. Raphael thanks his wife, Grace, for her understanding and patience, and for
sacrificing all the nights, weekends, and public holidays to keep him company in writing this edition. In
fact, without her gentle nudges, this edition would not have been completed. This edition is dedicated to
her.

I. Scott MacKenzie Raphael C.-W.
Phan

http://www.keil.com/

vi | PREFACE

CONTENTS
1 INTRODUCTION TO MICROCONTROLLERS 1

1.1 Introduction 1

1.2 Terminology 3

1.3 The Central Processing Unit 4

1.4 Semiconductor Memory: RAM and ROM 5

1.5 The Buses: Address, Data, and Control 6

1.6 Input/Output Devices 7

1.6.1 Mass Storage Devices | 1.6.2 Human Interface Devices | 1.6.3
Control/Monitor Devices

1.7 Programs: Big and Small 8

1.8 Micros, Minis, and Mainframes 9

1.9 Microprocessors vs. Microcontrollers 10
1.9.1 Hardware Architecture | 1.9.2 Applications | 1.9.3 Instruction Set Features

1.10 New Concepts 12

1.11 Gains and Losses: A Design Example 13

Problems 14

2 HARDWARE SUMMARY 17

2.1 MCS-51 Family Overview 17

2.2 Once Around the Pins 18
2.2.1 Port 0 | 2.2.2 Port 1 | 2.2.3 Port 2 | 2.2.4 Port 3 |
2.2.5 PSEN (Program Store Enable) | 2.2.6 ALE (Address Latch Enable) | 2.2.7
EA (External Access) | 2.2.8 RST (Reset) | 2.2.9 On-Chip Oscillator Inputs |
2.2.10 Power Connections

2.3 I/O Port Structure 22

2.4 Timing and the Machine Cycle 23

2.5 Memory Organization 24

vii

viii | CONTENTS

2.5.1 General-Purpose RAM | 2.5.2 Bit-Addressable RAM | 2.5.3

Register Banks

2.6 Special Function Registers 28

2.6.1 Program Status Word | 2.6.2 B Register | 2.6.3 Stack Pointer | 2.6.4 Data
Pointer | 2.6.5 Port Registers | 2.6.6 Timer Registers | 2.6.7 Serial Port Registers |
2.6.8 Interrupt Registers | 2.6.9 Power Control Register

2.7 External Memory 36

2.7.1 Accessing External Code Memory | 2.7.2 Accessing External Memory | 2.7.3
Address Decoding | 2.7.4 Overlapping the External Code and Data Spaces

2.8 8032/8052 Enhancements 41

2.9 Reset Operation 43

Summary 44

Problems 44

3 INSTRUCTION SET SUMMARY 49
3.1 Introduction 49

3.2 Addressing Modes 50

3.2.1 Register Addressing | 3.2.2 Direct Addressing | 3.2.3 Indirect
Addressing | 3.2.4 Immediate Addressing | 3.2.5 Relative Addressing | 3.2.6
Absolute Addressing | 3.2.7 Long Addressing | 3.2.8 Indexed Addressing

3.3 Instruction Types 59

3.3.1 Arithmetic Instructions | 3.3.2 Logical Instructions | 3.3.3 Data Transfer
Instructions | 3.3.4 Boolean Instructions | 3.3.5 Program Branching Instructions

Summary 7 8

Problems 7 8

4 TIMER OPERATION 87

4.1 Introduction 87

4.2 Timer Mode Register (TMOD) 89

4.3 Timer Control Register (TCON) 89

4.4 Timer Modes and the Overflow Flag 90

4.4.1 13-Bit Timer Mode (Mode 0) | 4.4.2 16-Bit Timer Mode (Mode 1) | 4.4.3 8-
Bit Auto-Reload Mode (Mode 2) | 4.4.4 Split Timer Mode (Mode 3)

4.5 Clocking Sources 92

4.5.1 Interval Timing | 4.5.2 Event Counting

4.6 Starting, Stopping, and Controlling the Timers 93

4.7 Initializing and Accessing Timer Registers 95

4.7.1 Reading a Timer "on the Fly"

4.8 Short, Medium, and Long Intervals 96

4.9 Producing Exact Frequencies 102

4.9.1 Eliminating Round-off Errors | 4.9.2 Compensating for Overhead Due to

Instructions

4.10 8052 Timer 2 105

4.10.1 Auto-Reload Mode | 4.10.2 Capture Mode

4.11 Baud Rate Generation 106

Summary 1 0 7

Problems 107

5 SERIAL PORT OPERATION 111
5.1 Introduction 111

5.2 Serial Communication 111

5.3 Serial Port Buffer Register (SBUF) 112

5.4 Serial Port Control Register (SCON) 113

5.5 Modes of Operation 113

5.5.1 8-Bit Shift Register (Mode 0) | 5.5.2 8-Bit UART with Variable Baud Rate
(Mode 1) | 5.5.3 9-Bit UART with Fixed Baud Rate (Mode 2) | 5.5.4 9-Bit
UART with Variable Baud Rate (Mode 3)

5.6 Full Duplex Serial Communication: Issues 117

5.7 Initialization and Accessing Serial Port Registers 118

5.7.1 Receiver Enable | 5.7.2 The Ninth Data Bit | 5.7.3 Adding a Parity Bit |
5.7.4 Interrupt Flags |

5.8 Multiprocessor Communications 119

5.9 Serial Port Baud Rates 120

5.9.1 Using Timer 1 as the Baud Rate Clock

Summary 1 2 7

Problems 128

6 INTERRUPTS 131
6.1 Introduction 131

6.2 8051 Interrupt Organization 132

6.2.1 Enabling and Disabling Interrupts | 6.2.2 Interrupt Priority | 6.2.3
Polling Sequence

CONTENTS | ix

6.3 Processing Interrupts 136

6.3.1 Interrupt Vectors

6.4 Program Design Using Interrupts 137

6.4.1 Small Interrupt Service Routines | 6.4.2 Large Interrupt Service

Routines

6.5 Timer Interrupts 139

6.6 Serial Port Interrupts 142

6.7 External Interrupts 143

6.8 Interrupt Timings 148

Summary 149

Problems 150

7 ASSEMBLY LANGUAGE PROGRAMMING 151
7.1 Introduction 151

7.2 Assembler Operation 152

7.2.1 Pass One | 7.2.2 Pass Two

7.3 Assembly Language Program Format 155

7.3.1 Label Field | 7.3.2 Mnemonic Field | 7.3.3 Operand Field | 7.3.4 Comment
Field | 7.3.5 Special Assembler Symbols | 7.3.6 Indirect Address | 7.3.7 Immediate
Data | 7.3.8 Data Address | 7.3.9 Bit Address | 7.3.10 Code Address | 7.3.11
Generic Jumps and Calls

7.4 Assemble-Time Expression Evaluation 160

7.4.1 Number Bases | 7.4.2 Character Strings | 7.4.3 Arithmetic Operators | 7.4.4
Logical Operators | 7.4.5 Special Operators | 7.4.6 Relational Operators | 7.4.7
Expression Examples | 7.4.8 Operator Precedence

7.5 Assembler Directives 164

7.5.1 Assembler State Control | 7.5.2 Symbol Definition | 7.5.3 Storage
Initialization/Reservation | 7.5.4 Program Linkage | 7.5.5 Segment Selection
Directives

7.6 Assembler Controls 173

7.7 Linker Operation 173

7.8 Annotated Example: Linking Relocatable Segments and Modules 176

7.8.1 ECHO.LST | 7.8.2 IO.LST | 7.8.3 EXAMPLE.M51

7.9 Macros 183

7.9.1 Parameter Passing | 7.9.2 Local Labels | 7.9.3 Repeat Operations | 7.9.4
Control Flow Operations |

Summary 1 8 8

Problems 188

x | CONTENTS

CONTENTS | xi

8 8051 C PROGRAMMING 191

8.1 Introduction 191

8.2 Advantages and Disadvantages of 8051 C 191

8.3 8051 C Compilers 192

8.4 Data Types 193

8.5 Memory Types and Models 197

8.6 Arrays 198

8.7 Structures 199

8.8 Pointers 199

8.8.1 A Pointer's Memory Type V 8.8.2 Typed Pointers |
8.8.3 Untyped Pointers

8.9 Functions 202

8.9.1 Parameter Passing | 8.9.2 Return Values

8.10 Some 8051 C Examples 204

8.10.1 The First Program || 8.10.2 Timers | 8.10.3 Serial Port | 8.10.4
Interrupts

Summary 214

Problems 214

9 PROGRAM STRUCTURE AND DESIGN 217

9.1 Introduction 217

9.2 Advantages and Disadvantages of Structured Programming 219

9.3 The Three Structures 220

9.3.1 Statements | 9.3.2 The Loop Structure | 9.3.3 The Choice Structure

9.4 Pseudo Code Syntax 234

9.5 Assembly Language Programming Style 237

9.5.1 Labels | 9.5.2 Comments || 9.5.3 Comment Blocks | 9.5.4 Saving

Registers on the Stack | 9.5.5 The Use of Equates || 9.5.6 The Use of
Subroutines | 9.5.7 Program Organization

9.6 8051 C Programming Style 243

9.6.1 Comments | 9.6.2 The Use of Defines | 9.6.3 The Use of Functions | 9.6.4
The Use of Arrays and Pointers | 9.6.5 Program Organization

Summary 2 4 5

Problems 2 4 5

xii | CONTENTS

10 TOOLS AND TECHNIQUES FOR PROGRAM
DEVELOPMENT 247
10.1 Introduction 247

10.2 The Development Cycle 247

10.2.1 Software Development | 10.2.2 Hardware Development

10.3 Integration and Verification 251

10.3.1 Software Simulation | 10.3.2 Hardware Emulation | 10.3.3
Execution from RAM | 10.3.4 Execution from EPROM | 10.3.5 The
Factory Mask Process

10.4 Commands and Environments 255

Summary 2 5 7

Problems 2 5 7

11 DESIGN AND INTERFACE EXAMPLES 259
11.1 Introduction 259

11.2 The SBC-51 259

11.3 Hexadecimal Keypad Interface 265

11.4 Interface to Multiple 7-Segment LEDs 267

11.5 Interface to Liquid Crystal Displays (LCDs) 273

11.6 Loudspeaker Interface 276

11.7 Nonvolatile RAM Interface 277

11.8 Input/Output Expansion 282

11.8.1 Using Shift Registers | 11.8.2 Using the 8255

11.9 RS232 (EIA-232) Serial Interface 291

11.10 Centronics Parallel Interface 294

11.11 Analog Output 296

11.12 Analog Input 300

11.13 Interface to Sensors 303

11.14 Interface to Relays 306

11.15 Stepper Motor Interface 310
Summary 315

Problems 3 1 5

12 DESIGN AND INTERFACE EXAMPLES IN C 319

12.1 Introduction 319

12.2 Hexadecimal Keypad Interface 319

12.3 Interface to Multiple 7-Segment LEDs 323

12.4 Interface to Liquid Crystal Displays (LCDs) 325

12.5 Loudspeaker Interface 327

12.6 Nonvolatile RAM Interface 329

12.7 Input/Output Expansion 333

12.8 RS232 (EIA-232) Serial Interface 337

12.9 Centronics Parallel Interface 339

12.10 Analog Output 341

12.11 Analog Input 342

12.12 Interface to Sensors 344

12.13 Interface to Relays 346

12.14 Stepper Motor Interface 347
Problems 350

13 EXAMPLE STUDENT PROJECTS 353

13.1 Introduction 353

13.2 Home Security System 353

13.2.1 Project Description | 13 .2.2 System Specifications
13.2.3 System Design | 13.2.4 Software Design

13.3 Elevator System 355

13.3.1 Project Description | 13 .3.2 System Specifications
13.3.3 System Design | 3.3.4 Software Design

13. 4 Tic- Tac- Toe 358

13.4.1 Project Description | 13 .4.2 System Specifications

13.4.3 Software Design

13.5 Calculator 363

13.5.1 Project Description | 13.5.2 System Specifications

13.5.3 Software Design

13. 6 Micromouse 366
13.6.1 Project Description | 13.6.2 System Specifications
13.6.3 System Design | 13.6.4 Software Design

13.7 A Soccer-Playing Robot 369

13.7.1 Project Description | 13.7.2 System Specifications
13.7.3 System Design | 13.7.4 Software Design

13.8 A Smart Card Application 371

13.8.1 Basic Security Concepts | 13.8.2 Project Description |
13.8.3 System Specifications | 13.8.4 Software Design

Summary 373

Problems 374

CONTENTS | xiii

xiv | CONTENTS

14 8051 DERIVATIVES 377

14.1 Introduction 377

14.2 MCS-151TM TM and MCS-251TM TM 377

14.3 Microcontrollers with Flash Memory and NVRAM 377

14.4 Microcontrollers with ADCs and DACs 378

14.5 High-Speed Microcontrollers 378

14.6 Network Microcontrollers 379

14.7 Secure Microcontrollers 379

Summary 379

Problems 380

APPENDICES
A Quick Reference Chart 381

B Opcode Map 383

C Instruction Definitions 385

D Special Function Registers 431

E 8051 Data Sheet 439

F ASCII Code Chart 455

G MON51—An 8051 Monitor Program 457

H A Guide to Keil's µVision2 IDE 499

I A Guide to the 8052 Simulator 507

J The Advanced Encryption Standard 515

K Sources of 8051 Development Products 521

BIBLIOGRAPHY 527

INDEX 529

Introduction to Microcontrollers

1.1 INTRODUCTION

Although computers have been with us for only a few decades, their impact has been pro-
found, rivaling that of the telephone, automobile, or television. Their presence is felt by us
all, whether computer programmers or recipients of monthly bills printed by a large com-
puter system and delivered by mail. Our notion of computers usually categorizes them as
"data processors," performing numeric operations with inexhaustible competence.

We confront computers of a vastly different breed in a more subtle context performing
tasks in a quiet, efficient, and even humble manner, their presence often unnoticed. As a
central component in many industrial, automotive, and consumer products, we find com-
puters at the supermarket inside cash registers and scales; at home in ovens, washing ma-
chines, alarm clocks, and thermostats; at play in toys, VCRs, stereo equipment, and musical
instruments; at the office in typewriters and photocopiers; in cars in dashboards and ignition
systems; and in industrial equipment such as drill presses and phototypesetters. In these set-
tings computers are performing "control" functions by interfacing with the "real world" to
turn devices on and off and to monitor conditions. Microcontrollers (as opposed to micro-
computers or microprocessors) are often found in applications such as these.

It's hard to imagine the present world of electronic tool toys without the micro-
processor. Yet this single-chip wonder has barely reached its 35th birthday. In 1971 Intel
Corporation introduced the 8080, the first successful microprocessor. Shortly thereafter,
Motorola, RCA, and then MOS Technology and Zilog introduced similar devices: the
6800, 1801, 6502, and Z80, respectively. Alone these integrated circuits (ICs) were rather
helpless (and they remain so); but as part of a single-board computer (SBC) they became
the central component in useful products for learning about and designing with
microprocessors. These SBCs, of which the D2 by Motorola, KIM-1 by MOS Technology,
and SDK-85 by Intel are the most memorable, quickly found their way into design labs at
colleges, universities, and electronics companies.

1

2 | CHAPTER 1

A device similar to the microprocessor is the microcontroller. In 1976 Intel introduced
the 8748, the first device in the MCS-48TM family of microcontrollers. Within a single inte-
grated circuit containing over 17,000 transistors, the 8748 delivered a CPU, 1K byte of
EPROM, 64 bytes of RAM, 27 I/O pins, and an 8-bit timer. This IC, and other MCS-48TM

devices that followed, soon became an industry standard in control-oriented applications.
Replacement of electromechanical components in products such as washing machines and
traffic light controllers was a popular application initially and remains so. Other products
where microcontrollers can be found include automobiles, industrial equipment, consumer
entertainment products, and computer peripherals. (Owners of an IBM PC need only look
inside the keyboard for an example of a microcontroller in a minimum-component design.)

The power, size, and complexity of microcontrollers advanced an order of magnitude in
1980 with Intel's announcement of the 8051, the first device in the MCS-51TM family of mi-
crocontrollers. In comparison to the 8048, this device contains over 60,000 transistors, 4K bytes
ROM, 128 bytes of RAM, 32 I/O lines, a serial port, and two 16-bit timers—a remarkable
amount of circuitry for a single IC (see Figure 1-1). New members have been added to the MCS-
51TM family, and today variations exist virtually doubling these specifications. Siemens
Corporation, a second source for MCS-51TM components, offers the SAB80515, an enhanced
8051 in a 68-pin parade with six 8-bit I/O ports, 13 interrupt sources, and an 8-bit A/D converter
with eight input channels. Chapter 14 also discusses several other enhanced variants of the 8051.
The 8051 family is well established as one of the most versatile and powerful of the 8-bit
microcontrollers, its position as a leading microcontroller entrenched for years to come.

This book is about the MCS-51TM family of microcontrollers. The following
chapters introduce the hardware and software architecture of the MCS-51TM family and
demonstrate through numerous design examples how this family of devices can participate
in electronic designs with a minimum of additional components.

FIGURE 1-1
The 8051 microcontroller. (a) An 8051 die (b) An 8751 with on-chip EPROM (Courtesy Intel Corporation)

INTRODUCTION TO MICROCONTROLLERS | 3

In the following sections, through a brief introduction to computer architecture, we shall
develop a working vocabulary of the many acronyms and buzz words that prevail (and often
confound) in this field. Since many terms have vague and overlapping definitions subject to
the prejudices of large corporations and the whims of various authors, our treatment is
practical rather than academic. Each term is presented in its most common setting with a
straightforward explanation.

1.2 TERMINOLOGY

To begin, a computer is defined by two key traits: (1) the ability to be programmed to operate
on data without human intervention, and (2) the ability to store and retrieve data. More
generally, a computer system also includes the peripheral devices for communicating with
humans, as well as programs that process data. The equipment is hardware, the programs are
software. Let's begin with computer hardware by examining Figure 1-2.

The absence of detail in the figure is deliberate, making it representative of all sizes
of computers. As shown, a computer system contains a central processing unit (CPU)
connected to random access memory (RAM) and read-only memory (ROM) via the
address bus, data bus, and control bus. Interface circuits connect the system buses to
peripheral devices. Let's discuss each of these in detail.

FIGURE 1-2
Block diagram of a microcomputer system

4 | CHAPTER 1

1.3 THE CENTRAL PROCESSING UNIT

The CPU, as the "brain" of the computer system, administers all activity in the system and per-
forms all operations on data. Most of the CPU's mystique is undeserved, since it is just a col-
lection of logic circuits that continuously performs two operations: fetching instructions and
executing instructions. The CPU has the ability to understand and execute instructions based on
a set of binary codes, each representing a simple operation. These instructions are usually
arithmetic (add, subtract, multiply, divide), logic (AND, OR, NOT, etc.), data movement, or
branch operations, and are represented by a set of binary codes called the instruction set.

Figure 1-3 is an extremely simplified view of the inside of a CPU. It shows a set of
registers for the temporary storage of information, an arithmetic and logic unit (ALU) for
performing operations on this information, an instruction decode and control unit that de-
termines the operation to perform and sets in motion the necessary actions to perform it,
and two additional registers. The instruction register (IR) holds the binary code for each
instruction as it is executed, and the program counter (PC) holds the memory address of
the next instruction to be executed.

Fetching an instruction from the system RAM or ROM is one of the most funda-
mental operations performed by the CPU. It involves the following steps: (a) the contents
of the program counter are placed on the address bus, (b) a READ control signal is
activated, (c) data (the instruction opcode) are read from RAM and placed on the data bus,
(d) the op-code is latched into the CPU's internal instruction register, and (e) the program
counter is incremented to prepare for the next fetch from memory. Figure 1-4 illustrates
the flow of information for an instruction fetch.

The execution stage involves decoding (or deciphering) the opcode and generating con-
trol signals to gate internal registers in and out of the ALU and to signal the ALU to perform
FIGURE 1-3

The central processing unit

(CPU)

INTRODUCTION TO MICROCONTROLLERS | 5

FIGURE 1-4

Bus activity for an opcode fetch cycle

the specified operation. Due to the wide variety of possible operations, this explanation is
somewhat limited in scope. It applies to a simple operation such as "increment register."
More complex instructions require more steps, such as reading a second and third byte as
data for the operation.

A series of instructions combined to perform a meaningful task is called a program,
or software, and herein is the real mystique. The degree to which tasks are efficiently and
correctly carried out is determined for the most part by the quality of software, not by the
sophistication of the CPU. Programs, then, "drive" the CPU, and in doing so they occa-
sionally go amiss, mimicking the frailties of their authors. Phrases such as "The computer
made a mistake" are misguided. Although equipment breakdowns are inevitable, mistakes
in results are usually a sign of poor programs or operator error.

1.4 SEMICONDUCTOR MEMORY: RAM AND ROM

Programs and data are stored in memory. The variations of computer memory are so vast,
their accompanying terms so plentiful, and technology breakthroughs so frequent, that ex-
tensive and continual study is required to keep abreast of the latest developments. The
memory devices directly accessible by the CPU consist of semiconductor ICs (integrated
circuits) called RAM and ROM. There are two features that distinguish RAM and ROM:
first, RAM is read/write memory while ROM is read-only memory; and second, RAM is
volatile (the contents are lost when power is removed), while ROM is nonvolatile.

Most computer systems have a disk drive and a small amount of ROM, just enough
to hold the short, frequently used software routines that perform input/output operations.

6 | CHAPTER 1

User programs and data are stored on disk and are loaded into RAM for execution. With
the continual drop in the per-byte cost of RAM, small computer systems often contain
millions of bytes of RAM.

1.5 THE BUSES: ADDRESS, DATA, AND CONTROL

A bus is a collection of wires carrying information with a common purpose. Access to the
circuitry around the CPU is provided by three buses: the address bus, data bus, and
control bus. For each read or write operation, the CPU specifies the location of the data
(or instruction) by placing an address on the address bus and then activates a signal on the
control bus, indicating whether the operation is a read or write. Read operations retrieve a
byte of data from memory at the location specified and place it on the data bus. The CPU
reads the data and places it in one of its internal registers. For a write operation, the CPU
outputs data on the data bus. Because of the control signal, memory recognizes the
operation as a write cycle and stores the data in the location specified.

Most small computers have 16 or 20 address lines. Given n address lines, each with the
possibility of being high (1) or low (0), 2n locations can be accessed. A 16-bit address bus,
therefore, can access 216 = 65,536 locations, and a 20-bit address can access 220 = 1,048,576
locations. The abbreviation K (for kilo) stands for 210 = 1024; therefore, 16 bits can address
26 x 210 = 64K locations, whereas 20 bits can address 1024K or 1 M locations. The
abbreviation M (for mega) stands for 220 = 1024 x 1024 = 1024K = 1,048,576.

The data bus carries information between the CPU and memory or between the CPU
and I/O devices. Extensive research effort has been expended in determining the sort of ac-
tivities that consume a computer's valuable execution time. Evidently computers spend up
to two thirds of their time simply moving data. Since the majority of move operations are
between a CPU register and external RAM or ROM, the number of lines (the width) of the
data bus is important for overall performance. This limitation-by-width is a bottleneck:
There may be vast amounts of memory on the system, and the CPU may possess tremen-
dous computational power, but access to the data—data movement between the memory
and CPU via the data bus—is bottlenecked by the width of the data bus.

This trait is so important that it is common to add a prefix indicating the extent of
this bottleneck. The phrase "16-bit computer" refers to a computer with 16 lines on its data
bus. Most computers fit the 4-bit, 8-bit, 16-bit, or 32-bit classification, with overall
computing power increasing as the width of the data bus increases.

Note that the data bus, as shown in Figure 1-2, is bidirectional, and the address bus
is unidirectional. Address information is always supplied by the CPU (as indicated by the
arrow in Figure 1-2), yet data may travel in either direction depending on whether a read
or write operation is intended.1 Note also that the term "data" is used in a general sense:
the "information" that travels on the data bus may be the instructions of a program, an
address appended to an instruction, or the data used by the program.

1
Address information is sometimes also provided by direct memory access (DMA) circuitry (in

addition to the CPU).

INTRODUCTION TO MICROCONTROLLERS | 7

The control bus is a hodgepodge of signals, each having a specific role in the orderly
control of system activity. As a rule, control signals are timing signals supplied by the CPU
to synchronize the movement of information on the address and data buses. Although there
are usually three signals, such as CLOCK, READ, and WRITE, for basic data movement
between the CPU and memory, the names and operation of these signals are highly de-
pendent on the specific CPU. The manufacturer's data sheets must be consulted for details.

1.6 INPUT/OUTPUT DEVICES

I/O devices, or "computer peripherals," provide the path for communication between the
computer system and the "real world." Without these, computer systems would be rather
introverted machines, of little use to the people who use them. Three classes of I/O
devices are mass storage, human interface, and control/monitor.

1.6.1 Mass Storage Devices

Like semiconductor RAMS and ROMs, mass storage devices are players in the arena of
memory technology—constantly growing, ever improving. As the name suggests, they hold
large quantities of information (programs or data) that cannot fit into the computer's
relatively small RAM or "main" memory. This information must be loaded into main mem-
ory before the CPU accesses it. Classified according to ease of access, mass storage devices
are either online or archival. Online storage, usually on magnetic disk, is available to the
CPU without human intervention upon the request of a program, and archival storage holds
data that are rarely needed and require manual loading onto the system. Archival storage is
usually on magnetic tapes or disks, although optical discs, such as CD-ROM or WORM
technology, are now emerging and may alter the notion of archival storage due to their re-
liability, high capacity, and low cost.2

1.6.2 Human Interface Devices

The union of human and machine is realized by a multitude of human interface devices,
the most common being the video display terminal (VDT) and printer. Although printers
are strictly output devices that generate hardcopy output, VDTs are really two devices,
since they contain a keyboard for input and a CRT (cathode-ray tube) for output. An entire
field of engineering, called "ergonomics" or "human factors," has evolved from the
necessity to design these peripheral devices with humans in mind, the goal being the safe,
comfortable, and efficient mating of the characteristics of people with the machines they
use. Indeed, there are more companies that manufacture this class of peripheral device
than companies that manufacture computers. For most computer systems, there are at least
three of these devices: a keyboard, CRT, and printer. Other human interface devices
include the joystick, light pen, mouse, microphone, and loudspeaker.

2
"CD-ROM" stands for compact-disc read-only memory. "WORM" stands for write-once read-mostly. A CD-

ROM contains 700 Mbyte of storage, enough to store the entire 32 volumes of Encyclopedia Britannica.

8 | CHAPTER 1

1.6.3 Control/Monitor Devices

By way of control/monitor devices (and some meticulously designed interface electronics
and software), computers can perform a myriad of control-oriented tasks, and perform them
unceasingly, without fatigue, far beyond the capabilities of humans. Applications such as
temperature control of a building, home security, elevator control, home appliance control,
and even welding parts of an automobile, are all made possible using these devices.

Control devices are outputs, or actuators, that can affect the world around them
when supplied with a voltage or current (e.g., motors and relays). Monitoring devices are
inputs, or sensors, which are stimulated by heat, light, pressure, motion, etc., and convert
this energy to a voltage or current read by the computer (e.g., phototransistors,
thermistors, and switches). The interface circuitry converts the voltage or current to binary
data, or vice versa, and through software an orderly relationship between inputs and
outputs is established. The hardware and software interfacing of these devices to
microcontrollers is one of the main themes in this book.

1.7 PROGRAMS: BIG AND SMALL

The preceding discussion has focused on computer systems hardware with only a passing
mention of the programs, or software, that make them work. The relative emphasis placed
on hardware versus software has shifted dramatically in recent years. Whereas the early
days of computing witnessed the materials, manufacturing, and maintenance costs of com-
puter hardware far surpassing the software costs, today, with mass-produced LSI (large-
scale integrated) chips, hardware costs are less dominant. It is the labor-intensive job of
writing, documenting, maintaining, updating, and distributing software that constitutes the
bulk of the expense in automating a process using computers.

Let's examine the different types of software. Figure 1-5 illustrates three levels of
software between the user and the hardware of a computer system: the application soft-
ware, the operating system, and the input/output subroutines.

At the lowest level, the input/output subroutines directly manipulate the hardware of
the system, reading characters from the keyboard, writing characters to the CRT, reading
blocks of information from the disk, and so on. Since these subroutines are so intimately
linked to the hardware, they are written by the hardware designers and are (usually) stored
in ROM. (They are the BIOS—basic input/output system—on the IBM PC, for example.)

To provide close access to the system hardware for programmers, explicit entry and
exit conditions are defined for the input/output subroutines. One only needs to initialize
values in CPU registers and call the subroutine; the action is carried out with results
returned in CPU registers or left in system RAM.

As well as a full complement of input/output subroutines, the ROM contains a start-up
program that executes when the system is powered up or reset manually by the operator. The
nonvolatile nature of ROM is essential here since this program must exist upon power-up.
"Housekeeping" chores, such as checking for options, initializing memory, performing diag-
nostic checks, etc., are all performed by the start-up program. Last, but not least, a bootstrap
loader routine reads the first track (a small program) from the disk into RAM and passes con-
trol to it. This program then loads the RAM-resident portion of the operating system (a large

INTRODUCTION TO MICROCONTROLLERS | 9

program) from the disk and passes control to it, thus com
There is a saying that "the system has pulled itself up by

The operating system is a large collection of prog
system and provide the mechanism to access, manage, an
resources. These abilities exist through the operating s
utility programs, which in turn facilitate the developme
applications software is well designed, the user interacts
knowledge of the operating system. Providing an effe
interface is a prime objective in the design of applications

1.8 MICROS, MINIS, AND MAINFRAMES

Using their size and power as a starting point, we class
minicomputers, or mainframe computers. A key trait of m
aging of the CPU: It is contained within a single integrat
the other hand, minicomputers and mainframe computers,
every architectural detail, have CPUs consisting of mult
(minicomputers) to several circuit boards of ICs (mainf
necessary to achieve the high speeds and computational po

Typical microcomputers such as the IBM PC, A
Amiga incorporate a microprocessor as their CPU. The R
require many ICs, with the component count often incr
terface circuits vary considerably in complexity, dependin

FIGURE 1-5

Levels of software
pleting the start-up of the system.
its own bootstraps."

rams that come with the computer
d effectively utilize the computer's
ystem's command language and
nt of applications software. If the
with the computer with little or no
ctive, meaningful, and safe user
software.

ify computers as microcomputers,
icrocomputers is the size and pack-
ed circuit—a microprocessor. On
as well as being more complex in

iple ICs, ranging from several ICs
rames). This increased capacity is
wer of larger computers.
pple Macintosh, and Commodore
AM, ROM, and interface circuits

easing with computing power. In-
g on the I/O devices. Driving the

10 | CHAPTER 1

loudspeaker contained in most microcomputers, for example, requires only a couple of logic
gates. The disk interface, however, usually involves many ICs, some in LSI packages.

Another feature separating micros from minis and mainframes is that microcomputers are
single-user, single-task systems-they interact with one user, and they execute one program at a
time Minis and mainframes, on the other hand, are multiuser, multitasking systems-they can
accommodate many users and programs simultaneously. Actually, the simultaneous execution
of programs is an illusion resulting from "time slicing" CPU resources. (Multiprocessing
systems, however, use multiple CPUs to execute tasks simultaneously.)

1.9 MICROPROCESSORS VS. MICROCONTROLLERS

It was pointed out above that microprocessors are single-chip CPUs used in microcomputers.
How, then, do microcontrollers differ from microprocessors? This question can be addressed
from three perspectives: hardware architecture, applications, and instruction set features.

1.9.1 Hardware Architecture

To highlight the difference between microcontrollers and microprocessors, Figure 1-2 is

redrawn in Figure 1-6, showing more detail.
Whereas a microprocessor is a single-chip CPU, a microcontroller contains, in a sin-

gle IC, a CPU and much of the remaining circuitry of a complete microcomputer system.
The components within the dotted line in Figure 1-6 are an integral part of most micro-
controller ICs. As well as the CPU, microcontrollers include RAM, ROM, a serial
interface, a parallel interface, timer, and interrupt scheduling circuitry—all within the same
IC. Of course, the amount of on-chip RAM does not approach that of even a modest
microcomputer system; but, as we shall learn, this is not a limitation, since microcontrollers
are intended for vastly different applications.

An important feature of microcontrollers is the built-in interrupt system. As control-
oriented devices, microcontrollers are often called upon to respond to external stimuli
(interrupts) in real time. They must perform fast context switching, suspending one
process while executing another in response to an "event." The opening of a microwave
oven's door is an example of an event that might cause an interrupt in a microcontroller-
based product. Of course, most microprocessors can also implement powerful interrupt
schemes, but external components are usually required. A microcontroller's on-chip
circuitry includes all the interrupt handling circuitry necessary.

1.9.2 Applications

Microprocessors are most commonly used as the CPU in microcomputer systems. This
function is what they are designed for, and this is where their strengths lie. Microcontrollers,
however, are found in small, minimum-component designs performing control-oriented ac-
tivities. These designs were often implemented in the past, using dozens or even hundreds of
digital ICs. A microcontroller can aid in reducing the overall component count. All that is
required is a microcontroller, a small number of support components, and a control program

INTRODUCTION TO MICROCONTROLLERS | 11

FIGURE 1-6
Detailed block diagram of a microcomputer system

in ROM. Microcontrollers are suited to "control" of I/O devices in designs requiring a
minimum component count, whereas microprocessors are suited to "processing"
information in computer systems.

1.9.3 Instruction Set Features

Due to the deficiencies in applications, microcontrollers have somewhat different requirements
for their instruction sets than microprocessors. Microprocessor instruction sets are "processing
intensive," implying they have powerful addressing modes with instructions catering to oper-
ations on large volumes of data. Their instructions operate on nibbles, bytes, words, or even
double words.3 Addressing modes provide access to large arrays of data, using address pointers
and offsets. Auto-increment and auto-decrement modes simplify stepping through arrays on
byte, word, or double-word boundaries. Privileged instructions cannot execute within the user
program. The list goes on.

3The most common interpretation of these terms is 4 bits = 1 nibble, 8 bits = 1 byte, 16 bits = 1 word,
and 32 bits = 1 double word.

12 | CHAPTER 1

Microcontrollers, on the other hand, have instruction sets catering to the control of
inputs and outputs. The interface to many inputs and outputs uses a single bit. For
example, a motor may be turned on and off by a solenoid energized by a 1-bit output port.
Micro-controllers have instructions to set and clear individual bits and perform other bit-
oriented operations such as logically ANDing, ORing, or EXORing bits, jumping if a bit is
set or clear, and so on. This powerful feature is rarely present in microprocessors, which
are usually designed to operate on bytes or larger units of data.

In the control and monitoring of devices (perhaps with a 1-bit interface), microcon-
trollers have built-in circuitry and instructions for input/output operations, event timing,
and enabling and setting priority levels for interrupts caused by external stimuli. Micro-
processors often require additional circuitry (serial interface ICs, interrupt controllers,
timers, etc.) to perform similar operations. Nevertheless, the sheer processing capability of
a microcontroller never approaches that of a microprocessor (all else being equal), since a
great deal of the IC's "real estate" is consumed by the on-chip functions—at the expense of
processing power, of course.

Since the on-chip real estate is at a premium in microcontrollers, the instructions must
be extremely compact, with the majority implemented in a single byte. A design criterion is
often that the control program must fit into the on-chip ROM, since the addition of even
one external ROM adds too much cost to the final product. A tight encoding scheme for the
instruction set is essential. This is rarely a feature of microprocessors; their powerful ad-
dressing modes bring with them a less-than-compact encoding of instructions.

1.10 NEW CONCEPTS

Microcontrollers, like other products considered in retrospect to have been a breakthrough,
have arrived out of two complementary forces: market need and new technology. The new
technology is just that mentioned above: semiconductors with more transistors in less
space, mass produced at a lower cost. The market need is the industrial and consumer ap-
petite for more sophisticated tools and toys.4 This demand encompasses a lot of territory.
The most illustrative example, perhaps, is the automobile dashboard. Witness the transfor-
mation of the car's "control center" over the past decade—made possible by the microcon-
troller and other technological developments. Once, drivers were content to know their
speed; today they may find a display of fuel economy and estimated time of arrival. Once
it was sufficient to know if a seatbelt was unfastened while starting the car; today, we are
"told" which seatbelt is the culprit. If a door is ajar, we are again duly informed by the
spoken word. (Perhaps the seatbelt is stuck in the door.)

This brings to mind a necessary comment. Microprocessors (and in this sense micro-
controllers) have been dubbed "solutions looking for a problem." It seems they have proved
so effective at reducing the complexity of circuitry in (consumer) products, that manufac-
turers are often too eager to include superfluous features simply because they are easy to

41t is sometimes argued that "market need" is really "market want," spurred on by the self-propelled growth of
technology.

INTRODUCTION TO MICROCONTROLLERS | 13

design into the product. The result often lacks eloquence—a showstopper initially, but an
annoyance finally. The most stark example of this bells-and-whistles approach occurs in
the recent appearance of products that talk. Whether automobiles, toys, or toasters, they
are usually examples of tackiness and overdesign-1980s art deco, perhaps. Rest assured
that once the dust has settled and the novelty has diminished, only the subtle and
appropriate will remain.

Microcontrollers are specialized. They are not used in computers per se, but in
industrial and consumer products. Users of such products are quite often unaware of
the existence of microcontrollers: to them, the internal components are but an inconse-
quential detail of design. Consider as examples microwave ovens, programmable ther-
mostats, electronic scales, and even cars. The electronics within each of these products
typically incorporates a microcontroller interfacing to push buttons, switches, lights,
and alarms on a front panel; yet user operation mimics that of the electromechanical
predecessors, with the exception of some added features. The microcontroller is invisi-
ble to the user.

Unlike computer systems, which are defined by their ability to be programmed and
then reprogrammed, microcontrollers are permanently programmed for one task. This
comparison results in a stark architectural difference between the two. Computer systems
have a high RAM-to-ROM ratio, with user programs executing in a relatively large RAM
space and hardware interfacing routines executing in a small ROM space. Microcontrollers,
on the other hand, have a high ROM-to-RAM ratio. The control program, perhaps
relatively large, is stored in ROM, while RAM is used only for temporary storage. Since
the control program is stored permanently in ROM, it has been dubbed firmware. In
degrees of "firmness," it lies somewhere between software—the programs in RAM that are
lost when power is removed—and hardware—the physical circuits. The difference between
software and hardware is somewhat analogous to the difference between a page of paper
(hardware) and words written on a page (software). Consider firmware as a standard form
letter, designed and printed for a single purpose.

1.11 GAINS AND LOSSES: A DESIGN EXAMPLE

The tasks performed by microcontrollers are not new. What is new is that designs are im-
plemented with fewer components than before. Designs previously requiring tens or even
hundreds of ICs are implemented today with only a handful of components, including a
microcontroller. The reduced component count, a direct result of the microcontroller's pro-
grammability and high degree of integration, usually translates into shorter development
time, lower manufacturing cost, lower power consumption, and higher reliability. Logic
operations that require several ICs can often be implemented within the microcontroller,
with the addition of a control program.

One tradeoff is speed. Microcontroller-based solutions are never as fast as the dis-
crete counterparts. Situations requiring extremely fast response to events (a minority of ap-
plications) are poorly handled by microcontrollers. For example, consider in Figure 1-7 the
somewhat trivial implementation of the NAND operation using an 8051 microcontroller.

14 | CHAPTER 1
It is not at all obvious that a microcontroller could be used for such an operation, but
it can. The software must perform the operations shown in the flowchart in Figure 1-8.
The 8051 assembly language program for this logic operation is shown below.

LOOP: MOV C,P1.4 ;READ P1.4 BIT INTO CARRY FLAG
ANL C,P1.5 ;AND WITH P1.5
ANL C,P1.6 ;AND WITH P1.6
CPL C ;CONVERT TO "NAND" RESULT
MOV P1.7,C ;SEND TO P1.7 OUTPUT BIT
SJMP LOOP ;REPEAT

If this program executes on an 8051 microcontroller, indeed the 3-input NAND
function is realized. (It could be verified with a voltmeter or oscilloscope.) The propa-
gation delay from an input transition to the correct output level is quite long, at least in
comparison to the equivalent TTL (transistor-transistor logic) circuit. Depending on when
the input changed relative to the program sensing the change, the delay is from 3 to 17
microseconds. (This assumes standard 8051 operation using a 12 MHz crystal.) The
equivalent TTL propagation delay is on the order of 10 nanoseconds—about three orders
of magnitude less. Obviously, there is no contest when comparing the speed of micro-
controllers with TTL implementations of the same function.

In many applications, particularly those with human operation, whether the delays
are measured in nanoseconds, microseconds, or milliseconds is inconsequential. (When
the oil pressure drops in your car, do you need to be informed within microseconds?) The
logic gate example illustrates that microcontrollers can implement logic operations.
Furthermore, as designs become complex, the advantages of the microcontroller-based
design begin to take hold. The reduced component count has advantages, as mentioned
earlier; but, also, the operations in the control program make it possible to introduce
changes in design by modifying only the software. This modification has minimal impact
on the manufacturing cycle.

This concludes our introduction to microcontrollers. In the next chapter, we begin
our examination of the MCS-51TM family of devices.

PROBLEMS

1.1 What was the first widely used microprocessor? In what year was it introduced and
by what company?

FIGURE 1-7

Microcontroller implementation of a simple

logic operation

INTRODUCTION TO MICROCONTROLLERS | 15

FIGURE 1-8

Flowchart for logic gate

program

1.2 Two of the smaller microprocessor companies in the 1970
and Zilog. Name the microprocessor that each of these com

1.3 What year was the 8051 microcontroller introduced? Wh
the 8051, and in what year was it introduced?

1.4 Name the two types of semiconductor memory discussed in
retains its contents when powered-off? What is the commo
property?

1.5 Which register in a CPU always contains an address? Wh
this register?

1.6 During an opcode fetch, what is the information on the
What is the direction of information flow on these buses du

1.7 How many bytes of data can be addressed by a comput
address bus and an 8-bit data bus?

1.8 What is the usual meaning of "16-bit" in the phrase "16-bit
1.9 What is the difference between online storage and archival
1.10 What type of technology is used for archival storage beside
s were MOS Technology
panies introduced.

at was the predecessor to

this chapter. Which type
n term that describes this

at address is contained in

address and data buses?
ring an opcode fetch?
er system with an 18-bit

computer"?
storage?

s magnetic tape and disk?

16 | CHAPTER 1

1.11 With regard to computing systems, what is the goal of the field of engineering
known as "human factors"?

1.12 Consider the following human interface devices: a joystick, a light pen, a mouse,
a microphone, and a loudspeaker. Which are input devices? Which are output devices?

1.13 Of the three levels of software presented in this chapter, which is the lowest level?
What is the purpose of this level of software?

1.14 What is the difference between an actuator and a sensor? Give an example of each.
1.15 What is firmware? Comparing a microcontroller-based system to a micro-

processor-based system, which is more likely to rely on firmware? Why?
1.16 What is an important feature of a microcontroller's instruction set that dis-

tinguishes it from a microprocessor?
1.17 Name five products not mentioned in this chapter that are likely to use a microcontroller.

Hardware Summary

2.1 MCS-51TM FAMILY OVERVIEW

The MCS-51TM is a family of microcontroller ICs developed, manufactured, and marketed
by Intel Corporation. Other IC manufacturers, such as Siemens, Advanced Micro Devices,
Fujitsu, and Philips are licensed "second source" suppliers of devices in the MCS-51TM

family. Each microcontroller in the family boasts a complement of features suited to a par-
ticular design setting.

In this chapter the hardware architecture of the MCS-51TM family is introduced. In-
tel's data sheet for the entry-level devices (e.g., the 8051AH) is found in Appendix E. This
appendix should be consulted for further details, for example, on electrical properties of
these devices.

Many of the hardware features are illustrated with short sequences of instructions.
Brief descriptions are provided with each example, but complete details of the instruction
set are deferred to Chapter 3. See also Appendix A for a summary of the 8051 instruction
set or Appendix C for definitions of each 8051 instruction.

The generic MCS-51TM IC is the 8051, the first device in the family offered com-
mercially. Its features are summarized below.

 4K bytes ROM (factory mask programmed)
 128 bytes RAM
 Four 8-bit I/O (Input/Output) ports
 Two 16-bit timers
 Serial interface
 64K external code memory space
 64K external data memory space
 Boolean processor (operates on single bits)
 210 bit-addressable locations
 4 µs multiply/divide

17

18 | CHAPTER 2

TABLE 2-1

Comparison of MCS-51TM ICs

Part
Number

On-Chip
Code Memory

On-Chip
Data Memory Timers

8051 4 K ROM 128 bytes 2
8031 0 K 128 bytes 2
8751 4 K EPROM 128 bytes 2
8052 8 K ROM 256 bytes 3
8032 0 K 256 bytes 3
8752 8 K EPROM 256 bytes 3

Other members of the MCS-51TM family offer different combinations of on-
chip ROM or EPROM, on-chip RAM, or a third timer. Each of the MCS-51TM ICs
is also offered in a low-power CMOS version (see Table 2-1).

The term "8051" loosely refers to the MCS-51TM family of microcontrollers.
When discussion centers on an enhancement to the basic 8051 device, the specific
part number is used. The features mentioned above are shown in the block
diagram in Figure 2-1. (See also Appendix D.)

2.2 ONCE AROUND THE PINS

This section introduces the 8051 hardware architecture from an external
perspective—the pinouts (see Figure 2-2). A brief description of the function of
each pin follows.

As evident in Figure 2-2, 32 of the 8051's 40 pins function as I/O port lines.
However, 24 of these lines are dual-purpose (26 on the 8032/8052). Each can
operate as I/O, or as a control line or part of the address or data bus.

Designs requiring a minimum of external memory or other external
components use these ports for general purpose I/O. The eight lines in each port
can be treated as a unit in interfacing to parallel devices such as printers, digital-
to-analog converters, and so on. Or, each line can operate independently in
interfacing to single-bit devices such as switches, LEDs, transistors, solenoids,
motors, and loudspeakers.

2.2.1 Port 0

Port 0 is a dual-purpose port on pins 32-39 of the 8051 IC. In minimum-component
designs, it is used as a general purpose I/O port. For larger designs with external memory,
it becomes a multiplexed address and data bus. (See 2.7 External Memory.)

2.2.2 Port 1

Port 1 is a dedicated I/O port on pins 1-8. The pins, designated as P1.0, P1.1, P1.2, etc., are

available for interfacing to external devices as required. No alternate functions are as signed

HARDWARE SUMMARY | 19

for Port 1 pins; thus, they are used solely for interfacing to external devices. Exceptions
are the 8032/8052 ICs, which use P1.0 and P1.1 either as I/O lines or as external inputs to
the third timer.

2.2.3 Port 2

Port 2 (pins 21-28) is a dual-purpose port serving as general purpose I/O, or as the high-
byte of the address bus for designs with external code memory or more than 256 bytes of
external data memory. (See 2.7 External Memory.)

2.2.4 Port 3

Port 3 is a dual-purpose port on pins 10-17. As well as general-purpose i/o, these pins are
multifunctional, with each having an alternate purpose related to special features of the
8051. The alternate purpose of the Port 3 and Port 1 pins is summarized in Table 2-2.

20 | CHAPTER 2

FIGURE 2-2

8051 pinouts

2.2.5 PSEN (Program Store Enable)

The 8051 has four dedicated bus control signals. Program Store Enable (PSEN) is an out-

put signal on pin 29. It is a control signal that enables external program (code) memory. It

usually connects to an EPROM's (Erasable Programmable Read-Only Memory) Output

Enable (OE) pin to permit reading of program bytes.

HARDWARE SUMMARY | 21

TABLE 2-2

Alternate pin functions for port pins

The (PSEN) signal pulses low during the fetch stage of an instruction, which is

stored in external program memory. The binary codes of a program (opcodes) are read

from EPROM, travel across the data bus, and are latched into the 8051's instruction

register for decoding. When executing a program from internal ROM (8051/8052),

(PSEN) remains in the inactive (high) state.

2.2.6 ALE (Address Latch Enable)

The ALE output signal on pin 30 will be familiar to anyone who has worked with Intel's
8085, 8088, or 8086 microprocessors. The 8051 similarly uses ALE for demultiplexing
the address and data bus. When Port 0 is used in its alternate mode—as the data bus and
the low-byte of the address busALE is the signal that latches the address into an external
register during the first half of a memory cycle. This done, the Port 0 lines are then
available for data input or output during the second half of the memory cycle, when the
data transfer takes place. (See 2.7 External Memory.)

The ALE signal pulses at 1/6th the on-chip oscillator frequency and can be used as a
general-purpose clock for the rest of the system. If the 8051 is clocked from a 12 MHz
crystal, the ALE signal oscillates at 2 MHz. The only exception is during the MOVX
instruction, when one ALE pulse is missed. (See Figure 2-11.) This pin is also used for the
programming input pulse for EPROM versions of the 8051.

2.2.7 EA (External Access)

The EA input signal on pin 31 is generally tied high (+5 V) or low (ground). If high, the

8051/8052 executes programs from internal ROM when executing in the lower 4K/8K of

memory. If low, programs execute from external memory only (and PSEN pulses low

accordingly). EA must be tied low for 8031/8032 ICs, since there is no on-chip program

memory. If EA is tied low on an 8051/8052, internal ROM is disabled and programs exe-

cute from external EPROM. The EPROM versions of the 8051 also use the EA line for the

+21 volt supply (Vpp)for programming the internal EPROM.

22 | CHAPTER 2

2.3 I/O
2.2.8 RST (Reset)

The RST input on pin 9 is the master reset for the 8051. When this signal is brought high
for at least two machine cycles, the 8051 internal registers are loaded with appropriate
values for an orderly system start-up. For normal operation, RST is low. (See 2.9 Reset
Operation.)

2.2.9 On-Chip Oscillator Inputs

As shown in Figure 2-2, the 8051 features an on-chip oscillator that is typically driven by a
crystal connected to pins 18 and 19. Stabilizing capacitors are also required as shown.

The nominal crystal frequency is 12 MHz for most ICs in the MCS-51TM family,
although the 80C31BH-1 can operate with crystal frequencies up to 16 MHz. The on-chip
oscillator needn't be driven by a crystal. As shown in Figure 2-3, a TTL clock source can
be connected to XTAL1 and XTAL2.

2.2.10 Power Connections

The 8051 operates from a single +5 volt supply. The Vcc connection is on pin 40, and the
Vss (ground) connection is on pin 20.

PORT STRUCTURE

The internal circuitry for the port pins is shown in abbreviated form in Figure 2-4. Writing
to a port pin loads data into a port latch that drives a field-effect transistor connected to the
port pin. The drive capability is four low-power Schottky TTL loads for Ports 1, 2, and 3;
and eight LS loads for Port 0. (See Appendix E for more details.) Note that the pull-up
resistor is absent on Port 0 (except when functioning as the external address/data bus). An
external pull-up resistor may be needed, depending on the input characteristics of the
device driven by the port pin.

There is both a "read latch" and "read pin" capability. Instructions that require a read-
modify-write operation (e.g., CPL P1.5) read the latch to avoid misinterpreting the voltage
level in the event the pin is heavily loaded (e.g., when driving the base of a transistor). In-
structions that input a port bit (e.g., MOV C,P1.5) read the pin. The port latch must contain

FIGURE 2-3

Driving the 8051 from a TTL oscillator

HARDWARE SUMMARY | 23

FIGURE 2-4
Circuitry for I/O ports

a 1, in this case, otherwise the FET driver is ON and pulls tile output low. A system reset
sets all port latches, so port pins may be used as inputs without explicitly setting tile port
latches. If, however, a port latch is cleared (e.g., CLR P1.5), then it cannot function subse-
quently as an input unless the latch is set first (e.g., SETB P1.5).

Figure 2-4 does not show the circuitry for the alternate functions for Ports 0, 2, and
3. When the alternate function is in effect, the output drivers are switched to an internal
address (Port 2), address/data (Port 0), or control (Port 3) signal, as appropriate.

2.4 TIMING AND THE MACHINE CYCLE

The 8051's on-chip oscillator is driven by an external quartz crystal through pins 18 and
19. This crystal has a typical frequency of 12 MHz, meaning that it generates 12 million
clock cycles per second. These oscillator clock cycles form the basis of the 8051's timing
and synchronization: Every operation performed by the 8051 is in step with these cycles.

With the oscillator clock as reference, the 8051 requires two such clock cycles to per-
form a single discrete operation, which is either fetching an instruction, decoding, or exe-
cuting it. This duration of two clock cycles is also called a state. Therefore, in order to fully
process an instruction, the 8051 would generally require six such states, or 12 clock cycles
since it would have to first fetch and decode the instruction before it goes to execute it. This
duration of six states is also known as one machine cycle. Of course, more complex in-
structions would take more than one machine cycle to be carried out. Both Appendix B and
C provide a list of the number of machine cycles for all the 8051 instructions. This number
ranges from one to four machine cycles. Figure 2-5 shows the relationship between oscillator
clock cycles (P), states (S), and a machine cycle.

Typically, the 8051's on-chip oscillator, fosc is driven by a 12 MHz crystal, so the
period of one clock pulse, Tclock = 1/fosc = 1/12 MHz = 83.33 ns. One machine cycle con-
sists of 12 such clock pulses, hence its duration is 83.33 ns x 12 = 1 µs.

24 | CHAPTER 2

2.5 MEM
ORY ORGANIZATION

Most microprocessors implement a shared memory space for data and programs. This is
reasonable, since programs are usually stored on a disk and loaded into RAM for execu-
tion; thus both the data and programs reside in the system RAM. Microcontrollers, on the
other hand, are rarely used as the CPU in "computer systems." Instead, they are employed
as the central component in control-oriented designs. There is limited memory, and there is
no disk drive or disk operating system. The control program must reside in ROM.

For this reason, the 8051 implements a separate memory space for programs (code)
and data. As shown in Table 2-1, both the code and data may be internal; however, both
expand using external components to a maximum of 64K code memory and 64K data
memory.

The internal memory consists of on-chip ROM (8051/8052 only) and on-chip data
RAM. The on-chip RAM contains a rich arrangement of general-purpose storage, bit-
addressable storage, register banks, and special function registers.

Two notable features are: (a) the registers and input/output ports are memory mapped
and accessible like any other memory location, and (b) the stack resides within the internal
RAM, rather than in external RAM as typical of microprocessors.

Figure 2-6 summarizes the memory spaces for the ROM-less 8031 device without
showing any detail of the on-chip data memory. (8032/8052 enhancements are summarized
later.)

Figure 2-7 gives the details of the on-chip data memory. As shown, the internal data
memory space is divided between internal RAM (00H-7FH) and special function regis-
ters (80H-0FFH). A confusion sometimes arises between the concept of internal (on-chip)
data memory and internal RAM. The 8051's internal data memory space has the range from
00H-0FFH, which is 256 bytes. However, only the lower half (00H-7FH) of the internal
memory space is for general data while the upper half (80H-0FFH) is mostly for specific
purposes and not for general data; hence, only the lower half is considered to be internal
RAM. The internal data RAM is further sub-divided into register banks (00H-1FH), bit-
addressable RAM (20H-2FH), and general-purpose RAM (30H-7FH). Each of these sec-
tions of internal memory is discussed below.

2.5.1 General-Purpose RAM

Although Figure 2-7 shows 80 bytes of general-purpose RAM from addresses 30H to 7FH,
the bottom 48 bytes from 00H to 2FH can be used similarly (although these locations have
other purposes as discussed below).

FIGURE 2-5

Relationship between oscillator

clock cycles, states, and the

machine cycle

HARDWARE SUMMARY | 25

FIGURE 2-6

Summary of the 8031 memory spaces

Any location in the general-purpose RAM can be accessed freely using the direct or
indirect addressing modes. For example, to read the contents of internal RAM address
5FH into the accumulator, the following instruction could be used:

MOV A,5FH

This instruction moves a byte of data using direct addressing to specify the "source location"
(i.e., address 5FH). The destination for the data is implicitly specified in the instruction op-
code as the A accumulator. (Note: Addressing modes are discussed in detail in Chapter 3.)

Internal RAM can also be accessed using indirect addressing through R0 or R1. For
example, the following two instructions perform the same operation as the single instruc-
tion above:

MOV R0,#5FH

MOV A,@R0

The first instruction uses immediate addressing to move the value 5FH into register R0,
and the second instruction uses indirect addressing to move the data "pointed at by R0"
into the accumulator.

26 | CHAPTER 2

FIGURE 2-7

Summary of the 8051 on-chip data memory

2.5.2 Bit-Addressable RAM

The 8051 contains 210 bit-addressable locations, of which 128 are at byte addresses 20H
through 2FH, and the rest are in the special function registers (discussed below).

The idea of individually accessing bits through software is a powerful feature of
most microcontrollers. Bits can be set, cleared, ANDed, ORed, etc., with a single
instruction. Most microprocessors require a read-modify-write sequence of instructions to
achieve the same effect. Furthermore, the 8051 I/O ports are bit-addressable, simplifying
the software interface to single-bit inputs and outputs.

HARDWARE SUMMARY | 27

There are 128 general-purpose bit-addressable locations at byte addresses 20H
through 2FH (8 bits/byte x 16 bytes = 128 bits). These addresses are accessed as bytes or
as bits, depending on the instruction. For example, to set bit 67H, the following instruction
could be used:

SETB 67H

Referring to Figure 2-7, note that "bit address 67H" is the most-significant bit at
"byte address 2CH." The instruction above has no effect on the other bits at this address.
Most microprocessors would perform the same operation as follows:

MOV A, 2CH ;READ ENTIRE BYTE
ORL A,#10000000B ;SET MOST-SIGNIFICANT BIT
MOV 2CH,A ;WRITE BACK ENTIRE BYTE

EXAMPLE What instruction would be used to set bit 3 in byte address 25H?
2.1

Solution

SETB 2BH

Discussion

Byte address 25H is within the bit-addressable area of internal memory (see Figure 2-7).
The bit addresses within this byte, starting at bit 0, are 28H, 29H, etc. Bit 3 within byte ad-
dress 25H is at bit address 2BH.

2.5.3 Register Banks

The bottom 32 locations of internal memory contain the register banks. The 8051 instruc-
tion set supports eight registers, R0 through R7, and by default (after a system reset) these
registers are at addresses 00H-07H. The following instruction, then, reads the contents of
address 05H into the accumulator:

MOV A,R5

This instruction is a 1-byte instruction using register addressing. Of course, the same oper-
ation could be performed in a 2-byte instruction, using the direct address as byte 2:

MOV A,05H

Instructions using registers R0 to R7 are shorter than the equivalent instructions
using direct addressing. Data values used frequently should use one of these registers.

The active register bank may be altered by changing the register bank select bits in
the program status word (discussed below). Assuming, then, that register bank 3 is active,
the following instruction writes the contents of the accumulator into location 18H:

MOV R0,A

28 | CHAPTER 2

The idea of "register banks" permits fast and effective "context switching," whereby
separate sections of software use a private set of registers independent of other sections of
software.

EXAMPLE What is the address of register 5 in register bank 3?

2.2 Solution

1DH

Discussion

Register bank 3 occupies internal memory locations 18H to 1FH (see Figure 2-7), with R0
at address 18H, R1 at address 19H, etc. Register 5 (R5) is at address 1DH.

2.6 SPECIAL FUNCTION REGISTERS

Internal registers on most microprocessors are accessed implicitly by the instruction set.
For example, "INCA" on the 6809 microprocessor increments the contents of the A accu-
mulator. The operation is specified implicitly within the instruction opcode. Similar access
to registers is also used on the 8051 microcontroller. In fact, the 8051 instruction "INC A"
performs the same operation.

The 8051 internal registers are configured as part of the on-chip RAM: therefore,
each register also has an address.1 This is reasonable for the 8051, since it has so many reg-
isters. As well as R0 to R7, there are 21 special function registers (SFRs) at the top of
internal RAM, from addresses 80H to 0FFH. (See Figure 2-7 and Appendix D.) Note that
most of the 128 addresses from 80H to 0FFH are not defined. Only 21 SFR addresses are
defined (26 on the 8032/8052).

Although the accumulator (A or ACC) may be accessed implicitly as shown previ-
ously, most SFRs are accessed using direct addressing. Note in Figure 2-7 that some SFRs
are both bit-addressable and byte-addressable. Programmers should be careful when ac-
cessing bits versus bytes. For example, the instruction

SETB 0E0H

sets bit 0 in the accumulator, leaving the other bits unchanged. The trick is to recognize
that 0E0H is both the byte address of the entire accumulator and the bit address of the
least-significant bit in the accumulator. Since the SETB instruction operates on bits (not
bytes), only the addressed bit is affected. Notice that the addressable bits within the
SFRs have the five high-order address bits matching those of the SFR. For example, Port
1 is at byte address 90H or 10010000B. The bits within Port 1 have addresses 90H to
97H, or 10010xxxB.

1The program counter and the instruction register are exceptions. Since these registers are rarely manipulated
directly, nothing is gained by placing them in the on-chip RAM.

HARDWARE SUMMARY | 29

EXAMPLE What instruction could be used to set the most-significant bit in the B accumulator while
2.3 leaving the other bits intact?

Solution

SETB 0F7H

Discussion

The B accumulator is at byte address 0F0H in the special function register space of
internal memory (see Figure 2-7). Individual bits are accessible, with bit 0 at address
0F0H, bit 1 at address 0F1H, etc. Bit 7 of the B accumulator is at bit address 0F7H.

The PSW is discussed in detail in the following section. The other SFRs are briefly
introduced following the PSW, with detailed discussions deferred to later chapters.

2.6.1 Program Status Word

The program status word (PSW) at address 0D0H contains status bits as summarized in
Table 2-3. Each of the PSW bits is examined below.

2.6.1.1 Carry Flag The carry flag (C or CY) is dual-purpose. It is used in the
traditional way for arithmetic operations: set if there is a carry out of bit 7 during an add,
or set if there is a borrow into bit 7 during a subtract. For example, if the accumulator
contains 0FFH, then the instruction

ADD A,#1

leaves the accumulator equal to 00H and sets the carry flag in the PSW.

30 | CHAPTER 2

EXAMPLE What is the state of the carry flag and the content of the accumulator after execution of the
2.4 following instruction sequence?

MOV R5,#55H
MOV A,#0AAH
ADD A,R5

Solution

C = 0, ACC = 0FFH

Discussion

The binary addition that occurs in the third instruction is illustrated below.

01010101 (R5 = 55H)
+10101010 (ACC = 0AAH)
11111111 (Result in ACC = 0FFH)

The addition does not generate a carry of the most-significant bit (bit 7); therefore, the
carry bit is cleared. The final result in the accumulator is 0FFH = 25510.

The carry flag is also the "Boolean accumulator," serving as a 1-bit register for
Boolean instructions operating on bits. For example, the following instruction ANDs bit
25H with the carry flag and places the result back in the carry flag:

ANL C,25H

2.6.1.2 Auxiliary Carry Flag When adding binary-coded-decimal (BCD) values,
the auxiliary carry flag (AC) is set if a carry was generated out of bit 3 into bit 4 or if the
result in the lower nibble is in the range 0AH-0FH. If the values added are BCD, then the
add instruction must be followed by DA A (decimal adjust accumulator) to bring results
greater than 9 back into range.

EXAMPLE What is the state of the auxiliary carry flag and the content of the accumulator after
2.5 execution of the instruction sequence below?

MOV R5,#1
MOV A,#9
ADD A,R5

Solution

AC = 1, ACC = 0AH

Discussion

The binary addition that takes place in the third instruction is illustrated below.

1
00000001 (R5 = 01H)

+00001001 (ACC = 09H)
00001010 (Result in ACC = 0AH)

HARDWARE SUMMARY | 31

Although no carry occurred during the binary addition, the low-order nibble of the result is
1010B = 0AH. Since this is greater than 910, the auxiliary carry bit is set. If the addition
instruction is followed by a decimal adjust instruction (DA A), the final result in the accu-
mulator is 0001000B 10H. As a binary-coded decimal number, 10H = 1010 which is the
correct result of 910 + 110.

2.6.1.3 Flag 0 Flag 0 (F0) is a general-purpose flag bit available for user appli-
cations.

2.6.1.4 Register Bank Select Bits The register bank select bits (RS0 and RS1)
determine the active register bank. They are cleared after a system reset and are changed
by software as needed. For example, the following three instructions enable register bank
3 and then move the content of R7 (byte address 1FH) to the accumulator:

SETB RS1
SETB RS0
MOV A,R7

When the above program is assembled, the correct bit addresses are substituted for the
symbols "RS1" and "RS0." Thus, the instruction SETB RS1 is the same as SETB 0D4H.

EXAMPLE Illustrate an instruction sequence to make register bank 2 the active register bank. Assume
2.6 that the previously active register bank is unknown.

Solution

SETB RS1
CLR RS0

Discussion

The result of the above instructions is to place 102 = 210 in the register bank select bits in
the program status word. The active register bank becomes bank 2. If it was known that
the register bank bits had not changed since the last CPU reset operation, the second
instruction would not be necessary; however, since an unknown state was assumed, both
register select bits are explicitly initialized.

2.6.1.5 Overflow Flag The overflow flag (OV) is set after an addition or sub-
traction operation if there was an arithmetic overflow. When signed numbers are added or
subtracted, software can examine this bit to determine if the result is in the proper range.
When unsigned numbers are added, the OV bit can be ignored. Results greater than +127
or less than -128 will set the OV bit. For example, the following addition causes an over-
flow and sets the OV bit in the PSW:

Hex: 0F Decimal: 15

+7F +127
8E 142

As a signed number, 8EH represents -116, which is clearly not the correct result of
142; therefore, the OV bit is set.

32 | CHAPTER 2

EXAMPLE What is the state of the overflow flag and the content of the accumulator after the execution

2.7 of the following instruction sequence?

MOV R7,#0FFH
MOV A,#0FH
ADD A,R7

Solution

OV = 0, ACC = 0EH

Discussion

R7 is initialized with 0FFH, which as a signed number equals -110. The accumulator is ini-
tialized with 0FH, which equals 1510. The result of the addition is 15 + (-1) = 14 = 0EH.
Since 14 is within the allowable range for 8-bit signed numbers (-128 to +127), no over-
flow occurs and the OV bit is cleared. (Note, however, that the C bit is set because the
addition generates a carry out of bit 7.)

2.6.1.6 Parity Bit The parity bit (P) is automatically set or cleared each machine
cycle to establish even parity with the accumulator. The number of 1-bits in the accumula-
tor plus the P bit is always even. If, for example, the accumulator contains 10101101, P
will contain 1 (establishing a total of six 1-bits; i.e., an even number of 1s). The parity bit is
most commonly used in conjunction with serial port routines to include a parity bit before
transmission or to check for parity after reception.

EXAMPLE What is the state of the P bit after execution of the following instruction?
2.8

MOV A,#55H

Solution

P = 0

Discussion
In binary, 55H equals 01010101B. This pattern has four bits equal to 1. Since 4 is an even
number, the P bit is set to zero. The total number of bits equal to 1, counting those in the
accumulator and the P bit, is four, thus achieving even parity.

2.6.2 B Register

The B register, or accumulator B, at address 0F0H is used along with the accumulator for
multiply and divide operations. The MUL AB instruction multiplies the 8-bit unsigned val-
ues in A and B and leaves the 16-bit result in A (low-byte) and B (high-byte). The DIV AB
instruction divides A by B, leaving the integer result in A and the remainder in B. The B
register can also be treated as a general-purpose scratch-pad register. It is bit-addressable
through bit addresses 0F0H to 0F7H.

HARDWARE SUMMARY | 33

2.6.3 Stack Pointer

The stack pointer (SP) is an 8-bit register at address 81H. It contains the address of the data
item currently on the top of the stack. Stack operations include "pushing" data on the stack
and "popping" data off the stack. Pushing on the stack increments the SP before writing data,
and popping from the stack reads data and then decrements the SP. The 8051 stack is kept in
internal RAM and is limited to addresses accessible by indirect addressing. These are the first
128 bytes on the 8031/8051 or the full 256 bytes of on-chip RAM on the 8032/8052.

To reinitialize the SP with the stack beginning at 60H, the following instruction is used:

MOV SP,#5FH

On the 8031/8051 this would limit the stack to 32 bytes, since the uppermost address of
on-chip RAM is 7FH. The value 5FH is used, since the SP increments to 60H before the
first push operation.

EXAMPLE What instruction would be used to initialize the stack pointer on an 8052 to create a 48-byte
2.9 stack at the top of internal memory?

Solution

MOV SP,#0CFH

Discussion

Since the 8052 has 256 bytes of internal memory, a 48-byte stack positioned at the top would
occupy locations 0D0H to 0FFH. Since the SP increments before the first item is placed on
the stack, it should be initialized to the address just below the starting location, 0CFH.

Designers may choose not to reinitialize the stack pointer and let it retain its default
value upon system reset. The reset value of 07H maintains compatibility with the 8051's
predecessor, the 8048, and results in the first stack write storing data in location 08H. If
the application software does not reinitialize the SP, then register bank 1 (and perhaps 2
and 3) is not available, since this area of internal RAM is the stack.

The stack is accessed explicitly by the PUSH and POP instructions to temporarily
store and retrieve data, or implicitly by the subroutine call (ACALL, LCALL) and return
(RET, RETI) instructions to save and restore the program counter.

2.6.4 Data Pointer

The data pointer (DPTR), used to access external code or data memory, is a 16-bit register
at addresses 82H (DPL, low-byte) and 83H (DPH, high-byte). The following three instruc-
tions write 55H into external RAM location 1000H:

MOV A,#55H
MOV DPTR,#1000H
MOVX @DPTR,A

The first instruction uses immediate addressing to load the data constant 55H into the ac-
cumulator. The second instruction also uses immediate addressing, this time to load the

34 | CHAPTER 2

16-bit address constant 1000H into the data pointer. The third instruction uses indirect ad-
dressing to move the value in A (55H) to the external RAM location whose address is in
the DPTR (1000H). The "X" in the mnemonic "MOVX" indicates that the move instruction
accesses external data memory.

2.6.5 Port Registers

The 8051 I/O ports consist of Port 0 at address 80H, Port 1 at address 90H, Port 2 at
address 0A0H, and Port 3 at address 0B0H. Ports 0, 2, and 3 may not be available for I/O if
external memory is used or if some of the 8051 special features are used (interrupts, serial
port, etc.). Nevertheless, P1.2 to P1.7 are always available as general purpose I/O lines.

All ports are bit-addressable. This capability provides powerful interfacing possibi-
lities. If a motor is connected through a solenoid and transistor driver to Port 1 bit 7, for
example, it could be turned on and off using a single 8051 instruction:

SETB P1.7

might turn the motor on, and

CLR P1.7

might turn it off.
The instructions above use the dot operator to address a bit within a bit-addressable

byte location. The assembler performs the necessary conversion; thus, the following two
instructions are the same:

CLR P1.7
CLR 97H

The use of predefined assembler symbols (e.g., P1) is discussed in detail in Chapter 7.
In another example, consider the interface to a device with a status bit called BUSY,

which is set when the device is busy and clear when it is ready. If BUSY connects to, say,
Port 1 bit 5, the following loop could be used to wait for the device to become ready:

WAIT: JB P1.5,WAIT

This instruction means "if the bit P1.5 is set, jump to the label WAIT." In other words
"jump back and check it again."

2.6.6 Timer Registers

The 8051 contains two 16-bit timer/counters for timing intervals or counting events. Timer 0
is at addresses 8AH (TL0, low-byte) and 8CH (TH0, high-byte), and Timer 1 is at addresses
8BH (TLl, low-byte) and 8DH (TH1, high-byte). Timer operation is set by the timer mode
register (TMOD) at address 89H and the timer control register (TCON) at address 88H. Only
TCON is bit-addressable. The timers are discussed in detail in Chapter 4.

2.6.7 Serial Port Registers

The 8051 contains an on-chip serial port for communicating with serial devices such as ter-
minals or modems, or for interfaces with other ICs with a serial interface (A/D converters,
shift registers, nonvolatile RAMs, etc.). One register, the serial data buffer (SBUF) at
address 99H, holds both the transmit data and receive data. Writing to SBUF loads data for

HARDWARE SUMMARY | 35

transmission; reading SBUF accesses received data. Various modes of operation
are programmable through the bit-addressable serial port control register (SCON)
at address 98H. Serial port operation is discussed in detail in Chapter 5.

2.6.8 Interrupt Registers

The 8051 has a 5-source, 2-priority level interrupt structure. Interrupts are
disabled after a system reset and then enabled by writing to the interrupt enable
register (1E) at address 0A8H. The priority level is set through the interrupt
priority register (IP) at address 0B8H. Both registers are bit-addressable.
Interrupts are discussed in detail in Chapter 6.

2.6.9 Power Control Register

The power control register (PCON) at address 87H contains miscellaneous control bits.
These are summarized in Table 2-4.

The SMOD bit doubles the serial port baud rate when in Modes 1, 2, or 3.
(See Chapter 5.) PCON bits 6, 5, and 4 are undefined. Bits 3 and 2 are general-
purpose flag bits available for user applications.

The power control bits, power down (PD) and idle (IDL), were originally
available in all MCS-51TM family ICs but are now implemented only in the CMOS
versions. PCON is not bit-addressable.

2.6.9.1 Idle Mode An instruction that sets the IDL bit will be the last

instruction executed before entering idle mode. In idle mode the internal clock

signal is gated off to the CPU, but not to the interrupt, timer, and serial port

functions. The CPU status is preserved and all register contents are maintained.

Port pins also retain their logic levels. ALE and (PSEN) are held high.

Idle mode is terminated by any enabled interrupt or by a system reset. Either condi-
tion clears the IDL bit.

2.6.9.2 Power Down Mode An instruction that sets the PD bit will be the last in-
struction executed before entering power down mode. In power down mode, (1) the on-
chip

TABLE 2-4 PCON register summary

Bit Symbol Description

7 SMOD Double-baud rate bit; when set, baud rate is doubled in serial
port modes 1, 2, or 3

6 Undefined
5 Undefined
4 Undefined
3 GF1 General purpose flag bit 1
2 GFO General purpose flag bit 0
1* PD Power down; set to activate power down mode; only exit is
0* IDL Idle mode; set to activate idle mode; only exit is an

interrupt or system reset

*Only implemented in CMOS versions

36 | CHAPTER 2

oscillator is stopped, (2) all functions are stopped, (3) all on-chip RAM contents are

retained, (4) port pins retain their logic levels, and (5) ALE and (PSEN) are held low. The

only exit is a system reset.
During power down mode, Vcc can be as low as 2V. Care should be taken not to

lower Vcc until after power down mode is entered, and to restore Vcc to 5V at least 10
oscillator cycles before the RST pin goes low again (upon leaving power down mode).

2.7 EXTERNAL MEMORY

It is important that microcontrollers have expansion capabilities beyond the on-chip resources
to avoid a potential design bottleneck. If any resources must be expanded (memory, I/O, etc.),
then the capability must exist. The MCS-51TM architecture provides this in the form of a 64K
external code memory space and a 64K external data memory space. Extra ROM and RAM
can be added as needed. Peripheral interface ICs can also be added to expand the I/O capa-
bility. These become part of the external data memory space using memory-mapped I/O.

When external memory is used, Port 0 is unavailable as an I/O port. It becomes a multi-
plexed address (A0-A7) and data (D0-D7) bus, with ALE latching the low-byte of the address at
the beginning of each external memory cycle. Port 2 is usually (but not always) employed for
the high-byte of the address bus.

FIGURE 2-8

Multiplexing the address bus (low-byte) and data bus

HARDWARE SUMMARY | 37

Before discussing the specific details of multiplexing the address and data buses, the
general idea is presented in Figure 2-8. A nonmultiplexed arrangement uses 16 dedicated
address lines and eight dedicated data lines, for a total of 24 pins. The multiplexed arrangement
combines eight lines for the data bus and the low-byte of the address bus, with another eight
lines for the high-byte of the address bus—a total of 16 pins. The savings in pins allows other
functions to be offered in a 40-pin DIP (dual inline package).

Here's how the multiplexed arrangement works: during the first half of each
memory cycle, the low-byte of the address is provided on Port 0 and is latched using ALE.
A 74HC373 (or equivalent) latch holds the low-byte of the address stable for the duration
of the memory cycle. During the second half of the memory cycle, Port 0 is used as the
data bus, and data are read or written depending on the operation.

2.7.1 Accessing External Code Memory

External code memory is read-only memory enabled by the (PSEN) signal. When an ex-
ternal EPROM is used, both Ports 0 and 2 are unavailable as general purpose I/O ports.
The hardware connections for external EPROM memory are shown in Figure 2-9.

An 8051 machine cycle is 12 oscillator periods. If the on-chip oscillator is driven by
a 12 MHz crystal, a machine cycle is 1 µs in duration. During a typical machine cycle,
ALE pulses twice and 2 bytes are read from program memory. (If the current instruction is
a 1-byte instruction, the second byte is discarded.) The timing for this operation, known as
an opcode fetch, is shown in Figure 2-10.

FIGURE 2-9
Accessing external code memory

38 | CHAPTER 2

Note: PCH = Program counter high byte
PCL = Program counter low byte

FIGURE 2-10

Read timing for external code memory

2.7.2 Accessing External Memory

External data memory is read/write memory enabled by the RD and WR —the alter-

nate pin functions for P3.7 and P3.6. The only access to external data memory is with

the MOVX instruction, using either the 16-bit data pointer (DPTR), R0, or R1 as the

address register.

RAMs may be interfaced to the 8051 the same way as EPROMs except the. RD line

connects to the RAM's output enable (WR) line and WR connects to the RAM's write

(W) line. The connections for the address and data bus are the same as for EPROMs. Us-

ing Ports 0 and 2 as above, up to 64 K bytes of external data RAM can be connected to

the 8051.

A timing diagram for a read operation to external data memory is shown in Figure 2-

11 for the MOVX A,@DPTR instruction. Notice that both an ALE pulse and a (PSEN)

pulse are skipped in lieu of a pulse on the RD line to enable the RAM.
2

The timing for a write cycle (MOVX @DPTR,A) is much the same except the WR

line pulses low and data are output on Port 0. (RD remains high.)
Port 2 is relieved of its alternate function (of supplying the high-byte of the address)

in minimum component systems, which use no external code memory and only a small
amount of external data memory. Eight-bit addresses can access external data memory
for small page-oriented memory configurations. If more than one 256-byte page of RAM

2
If MOVX instructions (and external RAM) are never used, then ALE pulses consistently at 1/6th the crystal

frequency.

HARDWARE SUMMARY | 39

FIGURE 2-11
Timing for MOVX instruction

is used, then a few bits from Port 2 (or some other port) can select a page. For
example, a 1K byte RAM (i.e., four 256-byte pages) can be interfaced to the 8051 as
shown in Figure 2-12.

Port 2 bits 0 and 1 must be initialized to select a page, and then a MOVX instruction
is used to read or write data within that page. For example, assuming P2.0 = P2.1 = 0, the

FIGURE 2-12
Interface to 1K RAM

40 | CHAPTER 2

following instructions could be used to read the content of external RAM address 0050H
into the accumulator:

MOV R0,#50H
MOVX A,@R0

In order to read the last address in this RAM, 03FFH, the two page select bits must be set.
The following instruction sequence could be used:

SETB P2.0
SETB P2.1

MOV R0,#0FFH
MOVX A,@R0

HARDWARE SUMMARY | 41

A feature of this design is that Port 2 bits 2
would be if the DPTR was the address register. P

2.7.3 Address Decoding

If multiple EPROMs and/or RAMs are inte
required. The decoding is similar to that require
if 8K byte EPROMs or RAMs are used, then t
memory ICs on 8K boundaries: 0000H-1FFFH,

Typically, a decoder IC such as the 74HC

the chip select (RD) inputs on the memory IC

system with multiple 2764 8K EPROMs and

separate enable lines (PSEN for code memo

8051 can accommodate up to 64K each of EPRO

2.7.4 Overlapping the External Co

Since code memory is read-only, an awkward

8051 software. How is software "written into" a

be executed from the "read-only" code space?

code and data memory spaces. Since PSEN is u

to read data memory, a RAM can occupy code

OE line to the logical AND (negative-input NO

in Figure 2-14 allows the RAM IC to be written

memory. Thus, a program can be loaded into th

and executed (by accessing it as code memory).

2.8 8032/8052 ENHANCEMENTS

The 8032/8052 ICs (and the CMOS and/or EPR
the 8031/8051 ICs. First, there is an additional 1

FIGURE 2-14
Overlapping the external code and
data spaces
to 7 are not needed as address bits, as they
2.2 to P2.7 are available for I/O purposes.

rfaced to an 8051, address decoding is
d for most microprocessors. For example,
he address bus must be decoded to select
2000H-3FFFH, and so on.

138 is used with its outputs connected to

s. This is illustrated in Figure 2-13 for a

6264 8K RAMs. Remember, due to the

ry, RD and WR for data memory), the

M and RAM.

de and Data Spaces

situation arises during the development of

target system for debugging if it can only

A common trick is to overlap the external

sed to read code memory and RD is used

and data memory space by connecting its

R) of PSEN and RD . The circuit shown

as data memory and read as data or code

e RAM (by writing to it as data memory)

OM versions) offer two enhancements to
28 bytes of on-chip RAM from addresses

42 | CHAPTER 2
80H to 0FFH. So as not to conflict with the SFRs (which have the same
addresses), the additional 1/8K of RAM is only accessible using indirect
addressing. An instruction such as

M0V A,0F0H

moves the contents of the B register to the accumulator on all MCS-51TM ICs. The in-

struction sequence

MOV R0,#0F0H
MOV A,@R0

reads into the accumulator the content of internal address 0F0H on the 8032/8052 ICs but
is undefined on the 8031/8051 ICs. The internal memory organization of the 8032/8052
ICs is summarized in Figure 2-15.

The second 8032/8052 enhancement is an additional 16-bit timer, Timer 2, which is
programmed through five additional special function registers. These are summarized in
Table 2-5. See Chapter 4 for more details.

TABLE 2-5

Timer 2 registers

Registration Address Description Bit-Addressable

T2CON
RCAP2L
RCAP2H
TL2
TH2

0C8H
0CAH
0CBH
0CCH
0CDH

Control
Low-byte capture
High-byte capture
Timer 2 low-byte
Timer 2 high-byte

Yes
No
No
No
No

FIGURE 2-15

8032/52 memory spaces

(a) Manual reset (b) Power-on reset

HARDWARE SUMMARY | 43

FIGURE 2-16

Two circuits for system

reset.

(a) Manual reset
(b) Power-on reset.

2.9 RESET OPERATION

The 8051 is reset by holding RST high for at least two machine cycles and then
returning it low. RST may be manually activated using a switch, or it may be
activated upon power-up using an RC (resistor-capacitor) network. Figure 2-16
illustrates two circuits for implementing system reset.

The state of all the 8051 registers after a system reset is summarized in
Table 2-6. The most important of these registers, perhaps, is the program counter,
which is loaded with 0000H. When RST returns low, program execution always
begins at the first location in code memory: address 0000H. The content of on-
chip RAM is not affected by a reset operation.

TABLE 2-6

Register values after system reset

Register(s) Contents

Program counter 0000H
Accumulator 00H
B register 00H
PSW 00H
SP 07H
DPTR 0000H
Ports 0-3 0FFH
IP (8031/8051) XX000000B
IP (8032/8052) 0X000000B
IE (8031/8051) 0XX00000B
E (8032/8052) XX000000B
Timer registers 00H
SCON 00H
SBUF 00H
PCON (HMOS) 0XXXXXXXB
PCON (CMOS) 0XX00000B

44 | CHAPTER 2

SUMMARY

This chapter has summarized the 8051 hardware architecture. Before developing useful
applications, though, we must understand the 8051 instruction set. The next chapter
focuses on the 8051 instructions and addressing modes. The discussions of the timer,
serial port, and interrupt SFRs were deliberately sparse in this chapter because dedicated
chapters follow that examine these in detail.

PROBLEMS

2.1 Name four manufacturers of the 8051 microcontroller, besides Intel.
2.2 Which device in the MCS-51TM family would probably be used for a product that

will be manufactured in large quantities with a large on-chip program?
2.3 What instruction could be used to set the least-significant bit at byte address 25H?
2.4 What instruction sequence could be used to place the logical OR of the bits at bit

addresses 00H and 01H into bit address 02H?
2.5 What instruction sequence could be used to read bit 0 of Port 0 and write the state of

the bit read to bit 0 of Port 3?
2.6 Illustrate an instruction sequence to read bit 0 and bit 1 of Port 0 and write a status

condition to bit 0 of Port 3 as follows: If both bits read are 1, write a 1 to the output
status bit, otherwise write a B.

2.7 Illustrate an instruction sequence to read bit 0 and bit 1 of Port 0 and write a status
condition to bit 0 of Port 3 as follows: If either bit is 1, but not both, write a 1 to the
output status bit, otherwise write a 0.

2.8 Illustrate an instruction sequence to read bit 0 and bit 1 of Port 0 and write a status
condition to bit 0 of Port 3 as follows: If either bit read is 1, write a 0 to the output
status bit, otherwise write a 1.

2.9 For the three preceding questions, illustrate the operation using logic gates.
2.10 What bit addresses are set to 1 as a result of the following instructions?

a. MOV 26H,#26H

b. MOV R0,#26H

c. MOV @R0,#7AH

d. MOV A,#13H

e. MOV 30H,#55H

f. XRL 30H,#0AAH

g. SETB P1.1

h. MOV P3,#0CH

2.11 What 1-byte instruction has the same effect as the following 2-byte instruc-tion?

MOV 0E0H,#55H

2.12 Illustrate an instruction sequence to store the value 0ABH in external RAM at address
9A00.

HARDWARE SUMMARY | 45

2.13 How many special function registers are defined on the 8052?
2.14 What is the value of the 8051's stack pointer immediately after a system reset?
2.15 What instruction would be used to initialize the stack pointer to create a 64-byte

stack at the top of internal memory (a) on the 8031 or (b) on the 8032?
2.16 What instruction would be used to initialize the stack pointer to create a 32-byte

stack at the top of memory (a) on the 8051 or (b) on the 8052?
2.17 A certain subroutine makes extensive use of registers R0-R7. Illustrate how this

subroutine could switch the active register bank to bank 3 upon entry and restore the
previously active register bank upon exit.

2.18 What is the active register bank after execution of each of the following
instructions?

a. MOV PSW,#0FDH

b. MOV PSW,#18H

c. MOV PSW,#08H

2.19 What is the active register bank after execution of each of the following
instructions?

i. MOV PSW,#0C8H

j. MOV PSW,#50H

k. MOV PSW,#10H

2.20 The 8BC31BH-1 can operate using a 16 MHz crystal connected to its XTAL1 and
XTAL2 inputs. If MOVX instructions are not used, what is the frequency of the sig-
nal on ALE?

2.21 If an 8051 is operating from a 4 MHz crystal, what is the duration of a machine
cycle?

2.22 If an 8051 is operating from a 10 MHz crystal, what is the frequency of the wave-
form on ALE? Assume the software is not accessing external RAM.

2.23 What is the duty cycle of ALE? Assume that software is not accessing external
RAM. (Note: Duty cycle is defined as the proportion of time a pulse waveform is
high.)

2.24 Section 2.9 states that the 8051 is reset if the RST pin is held high for a minimum of
two machine cycles. (Note: As stated in the 8051's DC Characteristics in Appendix
E, a "high" on RST is 2.5 volts minimum.)

a) If an 8051 is operating from an 8 MHz crystal, what is the minimum length of
time for RST to be high to achieve a system reset?

b) Figure 2-16a shows an RC circuit for a manual reset. While the reset button is
depressed, RST = 5 volts and the system is held in a reset state. How long
after the reset button is released will the 8051 remain in a reset state?

2.25 How many low-power Schottky loads can be driven by the port line P1.7 on pin 8?
2.26 Name the 8051 control bus signals used to select external EPROMs and external

RAMs.
2.27 What is the bit address of the most-significant bit at byte address 25H in the 8051's

internal data memory?
2.28 What is the bit address of bit 3 in byte address 2FH in the 8051's internal data

memory?

46 | CHAPTER 2

2.29 Some of the bit addressable locations in the 8031's on-chip data memory are bought
out as signals on the 8031 IC. Which ones? What are their pin numbers and what are
their bit addresses?

2.30 Identify the bit position and byte address for each of the following SETB
instructions.

a. SETB 37H

b. SETB 77H

c. SETB 0F7H

2.31 Identify the bit position and byte address for each of the following SETB instructions.

a. SETB 0A8H

b. SETB 84H

c. SETB 63H

2.32 What instruction sets the least-significant bit of the accumulator without affecting the
other seven bits?

2.33 What is the state of the P bit in the PSW after execution of each of the following in-
structions?

a. MOV A,#55H

b. MOV A,#0F8H

c. MOV A,#0FFH

2.34 What is the state of the P bit in the PSW after execution of each of the following in-
structions?

a. CLR A

b. MOV A,#03H

c. MOV A,#0ABH

2.35 What instruction sequence could be used to copy the content of R7 to external RAM
location 100H?

2.36 Illustrate an instruction sequence to read external RAM address 08F5H and place the
byte read into the B accumulator.

2.37 Assume the first instruction executed following a system reset is a subroutine call. At
what addresses in internal RAM is the program counter saved before branching to the
subroutine?

2.38 Consider the instruction MOV SP,#08FH. (a) What is the effect of this instruction if
executed on an 8032? (b) What is its effect if executed on an 8031?

2.39 If an 8031 program is designed to use only register bank zero, then the stack pointer
need not be initialized. However, if an 8031 program is designed to use all four
register banks, then it is imperative that the stack pointer be explicitly initialized.
Why?

2.40 What is the difference between the 8051's idle mode and power-down mode?
2.41 What instruction could be used to force the 8051 in power-down mode?
2.42 Illustrate how two 32K-byte static RAMs could be interfaced to the 8051 so that they

occupy the full 64K external data space.
2.43 If the contents of the following are:

A = 55H

B = 11H

HARDWARE SUMMARY | 47

Internal RAM location 30H = 33H

SP = 00H

What would the contents be upon reset?
2.44 Explain the term "I/O expansion."
2.45 What are the differences between memory-mapped I/O and port I/O? Explain.
2.46 An 8051 microcontroller is to execute programs from an external ROM. Specify the

control signals and their logic values for enabling external ROM access. Also spec-
ify the register (and its initial value after reset) that will identify the first instruction
to be fetched.

2.47 The 8051 is said to have 128 bytes of internal data memory. However, referring to
the memory map in Figure 2-7, the on-chip data memory of the 8051 is from 00H to
0FFH, giving 256 locations. Why is this so?

2.48 Explain the difference between the stack and the stack pointer (SP) by using an
example.

48 | CHAPTER 2

Instruction Set Summary

3.1 INTRODUCTION

Just as sentences are made of words, programs are made of instructions. When programs are
constructed from logical, well-thought-out sequences of instructions, fast, efficient, and even
elegant programs result. Unique to each family of computers is its instruction set, a
repertoire of primitive operations such as "add," "move," or "jump." This chapter introduces
the MCS-51TM instruction set through an examination of addressing modes and examples
from typical programming situations. Appendix A contains a summary chart of all the 8051
instructions. Appendix C provides a detailed description of each instruction. These appen-
dices should be consulted for subsequent reference.

Programming techniques are not discussed, nor is the operation of the assembler pro-
gram used to convert assembly language programs (mnemonics, labels, etc.) into machine
language programs (binary codes). These topics are the subject of Chapter 7.

The MCS-51TM instruction set is optimized for 8-bit control applications. It provides
a variety of fast, compact addressing modes for accessing the internal RAM to facilitate
operations on small data structures. The instruction set offers extensive support for 1-bit
variables, allowing direct bit manipulation in control and logic systems that require
Boolean processing.

As typical of 8-bit processors, 8051 instructions have 8-bit opcodes. This structure
provides a possibility of 28 = 256 instructions. Of these, 255 are implemented and 1 is
undefined. As well as the opcode, some instructions have one or two additional bytes for
data or addresses. In all, there are 139 1-byte instructions, 92 2-byte instructions, and 24
3-byte instructions. The Opcode Map in Appendix B shows, for each opcode, the
mnemonic, the number of bytes in the instruction, and the number of machine cycles to
execute the instruction.

4 9

50 | CHAPTER 3

3.2 ADDRESSING MODES

When instructions operate on data, the question arises: "Where are the data?" The answer
to this question lies in the 8051's "addressing modes." There are several possible
addressing modes and there are several possible answers to the question, such as "in byte
2 of the instruction," "in register R4," "in direct address 35H," or perhaps "in external data
memory at the address contained in the data pointer."

Addressing modes are an integral part of each computer's instruction set. They allow
specifying the source or destination of data in different ways, depending on the program-
ming situation. In this section, we'll examine all the 8051 addressing modes and give ex-
amples of each. There are eight modes available:

 Register
 Direct
 Indirect
 Immediate
 Relative
 Absolute
 Long
 Indexed

3.2.1 Register Addressing

The 8051 programmer has access to eight "working registers," numbered R0 through R7. In-
structions using register addressing are encoded using the three least-significant bits of the in-
struction opcode to specify a register within this logical address space. Thus, a function code
and operand address can be combined to form a short (1-byte) instruction. (See Figure 3-1a.)

The 8051 assembly language indicates register addressing with the symbol Rn where
n is from 0 to 7. For example, to add the contents of Register 7 to the accumulator, the fol-
lowing instruction is used

ADD A,R7

and the opcode is 00101111B. The upper five bits, 00101, indicate the instruction, and the

lower three bits, 111, the register. Convince yourself that this is the correct opcode by
looking up this instruction in Appendix C.

EXAMPLE What is the opcode for the following instruction? What does this instruction do?
3.1

MOV A,R7

Solution

0EFH. This instruction moves the 8-bit content of register 7 (in the active register bank) to
the accumulator.

Discussion
Appendix C lists all 8051 instructions, sorted alphabetically by mnemonic. The general
form of move byte instructions is

MOV destination_byte,source_byte

INSTRUCTION SET SUMMARY | 51

There are 15 variations identified. In this example, we are concerned with MOV A,Rn. The
binary opcode appears as 11101rrr. The low-order three bits identify the source register, which
is R7 in this example. Substituting "111" for "rrr" yields an opcode of 11101111B = 0EFH.

There are four "banks" of working registers, but only one is active at a time. Physi-
cally, the register banks occupy the first 32 bytes of on-chip data RAM (addresses 00H-
1FH) with PSW bits 4 and 3 determining the active bank. A hardware reset enables bank
0, but a different bank is selected by modifying PSW bits 4 and 3 accordingly. For ex-
ample, the instruction

MOV PSW,#00011000B

FIGURE 3-1
8051 Addressing modes. (a) Register addressing (b) Direct addressing (c) Indirect

addressing (d) Immediate addressing (e) Relative addressing (f) Absolute addressing (g)

Long addressing (h) Indexed addressing

52 | CHAPTER 3

activates register bank 3 by setting the register bank, select bits (RS1 and RS0) in PSW bit

positions 4 and 3.
Some instructions are specific to a certain register, such as the accumulator, data

pointer, etc., so address bits are not needed. The opcode itself indicates the register. These
"register-specific" instructions refer to the accumulator as "A," the data pointer as "DPTR,"
the program counter as "PC," the carry flag as "C," and the accumulator-B register pair as
"AB." For example,

INC DPTR

is a 1-byte instruction that adds to the 16-bit data pointer. Consult Appendix C to

determine the opcode for this instruction.

EXAMPLE (a) What is the opcode for the following instruction? (b) What does this instruction do?
3.2

MUL AB

Solution

(a) 0A4H. (b) This instruction multiplies the unsigned 8-bit value in the accumulator by the
unsigned 8-bit value in register B. The 16-bit product is left in the accumulator (low byte)
and register B (high byte).

3.2.2 Direct Addressing

Direct addressing can access any on-chip variable or hardware register. An additional byte
is appended to the opcode specifying the location to be used. (See Figure 3-1b.)

Depending on the high-order bit of the direct address, one of two on-chip memory
spaces is selected. When bit 7 = 0, the direct address is between 0 and 127 (00H-7FH) and
the 128 low-order on-chip RAM locations are referenced. All I/O ports and special function,
control, or status registers, however, are assigned addresses between 128 and 255 (80H-
0FFH). When the direct address byte is between these limits (bit 7 = 1), the corresponding
special function register is accessed. For example, Ports 0 and 1 are assigned direct
addresses 80H and 90H, respectively. It is usually not necessary to know the addresses of
these registers; the assembler allows for and understands the mnemonic abbreviations ("P0"
for Port 0, "TMOD" for timer mode register, etc.). Some assemblers, such as Intel's ASM51,
automatically include the definition of predefined symbols. Other assemblers may use a
separate source file containing the definitions. As an example of direct addressing, the
instruction

MOV P1,A

transfers the content of the accumulator to Port 1. The direct address of Port 1 (90H) is
determined by the assembler and inserted as byte 2 of the instruction. The source of the
data, the accumulator, is specified implicitly in the opcode. Using Appendix C as a refer-
ence, the complete encoding of this instruction is

10001001 - 1st byte (opcode)
10010000 - 2nd byte (address of P1)

INSTRUCTION SET SUMMARY | 53

EXAMPLE What are the machine-language bytes for the following instruction?
3.3

MOV SCON,#55H

Solution

75H, 98H, 55H

Discussion

The general form of this instruction is

MOV direct,#data

As noted in Appendix C, the instruction is three bytes long. The first byte is the opcode,
75H. The second byte is the direct address of the SCON special function register, 98H (see
Figure 2-6 or Appendix D). The third byte is the immediate data, 55H.

3.2.3 Indirect Addressing

How is a variable identified if its address is determined, computed, or modified while a
program is running? This situation arises when manipulating sequential memory locations,
indexed entries within tables in RAM, multiple-precision numbers, or character strings.
Register or direct addressing cannot be used, since they require operand addresses to be
known at assemble-time.

The 8051 solution is indirect addressing. R0 and R1 may operate as "pointer" regis-
ters—their contents indicating an address in internal RAM where data are written or read.
The least-significant bit of the instruction opcode determines which register (R0 or R1) is
used as the pointer. (See Figure 3-1c.)

In 8051 assembly language, indirect addressing is represented by a commercial "at"
sign (@) preceding R0 or R1. As an example, if R1 contains 40H and internal memory ad-
dress 40H contains 55H, the instruction

MOV A,@R0

moves 55H into the accumulator.

EXAMPLE (a) What is the opcode for the following instruction? (b) What does this instruction do?
3.4

MOV A,@R0

Solution

(a) 0E6H. (b) This instruction moves a byte of data from internal RAM to the accumulator.
The data are moved from the location whose address is in R0.

Discussion

This instruction is of the general form

MOV A,@Ri

54 | CHAPTER 3

The binary opcode, as looked-up in Appendix C, is 1110011i. Since "R0" is specified as the
indirect register, "0" is substituted for "i" in the opcode. The opcode is 11100110B = E6H.

Indirect addressing is essential when stepping through sequential memory locations. For
example, the following instruction sequence clears internal RAM from address 60H to 7FH:

MOV R0,#60H

LOOP: MOV @R0,#0
INC R0
CJNE R0,#80H,LOOP

(continue)

The first instruction initializes R0 with the starting address of the block of memory; the
second instruction uses indirect addressing to move 00H to the location pointed at by R0
the third instruction increments the pointer (R0) to the next address; and the last
instruction tests the pointer to see if the end of the block has been reached. The test uses
80H, rather than 7FH, because the increment occurs after the indirect move. This ensures
the final location (7FH) is written to before terminating.

3.2.4 Immediate Addressing

When a source operand is a constant rather than a variable (i.e., the instruction uses a
value known at assemble-time), then the constant can be incorporated into the instruction
as a byte of "immediate" data. An additional instruction byte contains the value. (See
Figure 3-1d.)

In assembly language, immediate operands are preceded by a number sign (#). The
operand may be a numeric constant, a symbolic variable, or an arithmetic expression using
constants, symbols, and operators. The assembler computes the value and substitutes the
immediate data into the instruction. For example, the instruction

MOV A,#12

loads the value 12 (0CH) into the accumulator. (It is assumed the constant "12" is in deci-
mal notation, since it is not followed by "H.")

With one exception, all instructions using immediate addressing use an 8-bit data
constant for the immediate data. When initializing the data pointer, a 16-bit constant is re-
quired. For example,

MOV DPTR, #8000H

is a 3-byte instruction that loads the 16-bit constant 8000H into the data pointer.

EXAMPLE What are the hexadecimal and binary machine language bytes for the following instruction?
3.5

ADD A,#15

Solution

Binary: 00100100B, 00001111B. Hexadecimal: 24H, 0FH.

INSTRUCTION SET SUMMARY | 55

Discussion

This instruction is of the general form

ADD A,#data

The opcode, as looked up in Appendix C, is 00100100B = 24H. The second byte of the
instruction is the immediate data. This is specified in the instruction as 1510 = 00001111 B
= 0FH.

3.2.5 Relative Addressing

Relative addressing is used only with certain jump instructions. A relative address (or off-
set) is an 8-bit signed value, which is added to the program counter to form the address of
the next instruction executed. Since an 8-bit signed offset is used, the range for jumping is
-128 to +127 locations. The relative offset is appended to the instruction as an additional
byte. (See Figure 3-le.)

Prior to the addition, the program counter is incremented to the address following
the jump instruction; thus, the new address is relative to the next instruction, not the
address of the jump instruction. (See Figure 3-2.)

Normally, this detail is of no concern to the programmer, since jump destinations are
usually specified as labels and the assembler determines the relative offset accordingly. For
example, if the label THERE represents an instruction at location 1040H, and the instruction

SJMP THERE

is in memory at locations 1000H and 1001H, the assembler will assign a relative offset of
3EH as byte 2 of the instruction (1002H + 3EH = 1040H).

FIGURE 3-2
Calculating the offset for relative addressing. (a) Short jump ahead in memory (b) Short jump
back in memory

56 | CHAPTER 3

Relative addressing offers the advantage of providing position-independent code
(since "absolute" addresses are not used), but the disadvantage that the jump destinations
are limited in range.

EXAMPLE The instruction
3.6

SJMP 9030H

is in memory location 9000H and 9001H. What are the machine language bytes for this
instruction?

Solution

80H, 2EH

Discussion

This instruction is of the general form

SJMP relative

As looked up in Appendix C, the instruction is two bytes long, beginning with 10000000B
= 80H as the opcode. The second byte is an 8-bit signed value which is the relative offset.
Since we are jumping "ahead" in memory for this example, the offset is positive. As shown
in Figure 3-2, the source address is the address "after" the jump instruction. The offset is
added to this value to obtain the destination address for the jump. Rather than draw a
picture and count out the offset, as in Figure 3-2, we can compute the offset arithmetically
as follows:

source address + offset = destination_address

o r

offset = destination_address - source, address

In this example the source address is 9002H (the address after the jump instruction) and
the destination address is 9030H, so

offset = 9030H - 9002H = 2EH

EXAMPLE An SJMP instruction with a machine language representation of 80H F6H is in memory
3.7 locations 0802H and 0803H. To what address will the jump occur?

Solution

07FAH

Discussion

The offset for this jump instruction is 0F6H, which is a negative number: The jump is "back"
in memory. The source address for the jump is the address following the jump instruction,
which for this example is 0804H. To compute the destination address, we simply add the

INSTRUCTION SET SUMMARY | 57

offset to the source address; however, there is a trick. Since our offset is negative and our
address is 16 bits, we must "sign-extend" the offset and express it as a 16-bit number:
0FFF6H. The destination address is computed as follows:

0804H (source address)
+0FFF6H (offset)

07FAH (destination address)

Note: In adding a negative offset to a source address, as above, a carry is generated out of
the most-significant bit. This is discarded.

3.2.6 Absolute Addressing

Absolute addressing is used only with the ACALL and AJMP instructions. These 2-byte
instructions allow branching within the current 2K page of code memory by providing the
11 least-significant bits of the destination address in the opcode (A10-A8) and byte 2 of
the instruction (A7-A0). (See Figure 3-1f.)

The upper five bits of the destination address are the current upper five bits in the
program counter, so the instruction following the branch instruction and the destination for
the branch instruction must be within the same 2K page, since A15-A11 do not change.
(See Figure 3-3.) For example, if the label THERE represents an instruction at address
0F46H, and the instruction

AJMP THERE

FIGURE 3-3

Instruction encoding for absolute addressing. (a) Memory map showing 2K pages (b) Within any 2K page,

the upper five address bits are the same for the source and destination addresses. The lower 11 bits of

the destination are supplied in the instruction

58 | CHAPTER 3

is in memory locations 0900H and 0901H, the assembler will encode the instruction as

11100001 - 1st byte (Al0-A8 + opcode)

01000110 - 2nd byte (A7-A0)

The underlined bits are the low-order 11 bits of the destination address, 0F46H =
0000111101000110B. The upper five bits in the program counter will not change when
this instruction executes. Note that both the AJMP instruction and the destination are
within the 2K page bounded by 0800H and 0FFFH (see Figure 3-3), and therefore have
the upper five address bits in common.

Absolute addressing offers the advantage of short (2-byte) instructions, but has the dis-
advantages of limiting the range for the destination and providing position-dependent code.

EXAMPLE An ACALL instruction is in memory locations 1024H and 1025H. The subroutine to
3.8 which the call is directed begins in memory location 17A6H. What are the machine

language bytes for the ACALL instruction?

Solution

F1H, A6H

Discussion

As found in Appendix C, the encoding for the ACALL instruction is

aaal000l aaaaaaaa

The low-order 11 bits of the destination address are inserted into the instruction with bits
10-8 placed in the high-order bits of the opcode and with bits 7-0 forming the second byte
of the instruction. The destination address (17A6H) is shown below in binary with the
low-order 11 bits identified as a group of three bits (10-8) and a group of eight bits (7-F).

00010111 10100110 = 17A6H
... aaa aaaaaaaa

The task is simply to correctly position the 11 bits from the destination address into the in-
struction bytes. This positioning is illustrated as follows:

lll1000l 10100ll0 = 0F1A6H

aaa aaaaaaaa

Note: Absolute addressing can only be used if the high-order five bits are the same in both
the source and destination addresses. It is this property that identifies the source and desti-
nation addresses as falling within the same 2K page.

3.2.7 Long Addressing

Long addressing is used only with the LCALL and LJMP instructions. These 3-byte instructions
include a full 16-bit destination address as bytes 2 and 3 of the instruction. (See Figure 3-1g.)
The advantage is that the full 64K code space may be used, but the disadvantage is that the

INSTRUCTION SET SUMMARY | 59

instructions are three bytes long and are position-dependent. Position-dependence is a dis-
advantage because the program cannot execute at different addresses. If, for example, a
program begins at 2000H and an instruction such as LJMP 2040H appears, then the
program cannot be moved to, say, 4000H. The LJMP instruction would still jump to
2040H, which is not the correct location after the program has been moved.

EXAMPLE What are the machine language bytes for the following instruction?

3.9 LJMP 8AF2H

Solution

02H, 8AH, F2H

Discussion

As given in Appendix C, the LJMP instruction is three bytes long with the opcode (02H) in
the first byte and the 16-bit destination address in bytes 2 and 3. The high byte of the des-
tination address (8AH) is in byte 2, and the low byte (0F2H) is in byte 3.

3.2.8 Indexed Addressing

Indexed addressing uses a base register (either the program counter or the data pointer) and
an offset (the accumulator) in forming the effective address for a JMP or MOVC instruc-
tion. (See Figure 3-1h.) Jump tables or look-up tables are easily created using indexed ad-
dressing. Examples are provided in Appendix C for the MOVC A,@A+<base-reg> and
JMP @A+ DPTR instructions.

EXAMPLE What is the opcode for the following instruction?

3.10 MOVC A,@A+DPTR

Solution

93H

Discussion

The answer is found simply by looking up the MOVC instruction in Appendix C. The in-
struction is only one byte long, with the opcode specifying both the operation and the ad-
dressing mode. This instruction moves a byte of data from code memory to the accumulator.
The address in code memory is found by adding the index (the present state of the accu-
mulator) to the base register (the data pointer). When the instruction finishes executing, the
index is lost because it is overwritten with the value moved from code memory.

3.3 INSTRUCTION TYPES

The 8051 instructions are divided among five functional groups:

 Arithmetic
 Logical
 Data transfer

60 | CHAPTER 3

 Boolean variable
 Program branching

Appendix A provides a quick reference chart showing all the 8051 instructions by func-
tional grouping. Once you are familiar with the instruction set, this chart should prove a
handy and quick source of reference. We continue by examining instructions in each func-
tional grouping from Appendix A.

3.3.1 Arithmetic Instructions

The arithmetic instructions are grouped together in Appendix A. Since four addressing
modes are possible, the ADD A instruction can be written in different ways:

ADD A,7PH (direct addressing)
ADD A,@R0 (indirect addressing)
ADD A,R7 (register addressing)
ADD A,#35H (immediate addressing)

All arithmetic instructions execute one machine cycle except the INC DPTR instruction
(two machine cycles) and the MUL AB and DIV AB instructions (four machine cycles).
(Note that one machine cycle takes 1 µs if the 8051 is operating from a 12 MHz clock.)

EXAMPLE The accumulator contains 63H, R3 contains 23H, and the PSW contains 00H. (a) What is
3.11 the hexadecimal content of the accumulator and the PSW after execution of the following

instruction?

ADD A,R3

(b) What is the content of the accumulator in decimal after execution of this instruction?

Solution
(a) ACC = 86H, PSW = 05H. (b) Decimal content of ACC = ? (see discussion).

Discussion
On the surface, this example seems straightforward: Given two values, add them and ob-
tain the sum. However, there are some interesting conceptual issues that are important to
understand. Let us begin by expressing the initial values of the ACC and R3 in decimal.
By the usual method of conversion to decimal, A = 63H = 01100011B = 9910 and
R3 = 23H = 00100011B = 3510. So, the result of the addition is 9910 + 3510 = 13410.
However, there is a problem. If we assume that a two's-complement signed notation is
used, the largest positive number that can be expressed in 8 bits is +12710. If an unsigned
notation is used, the largest possible 8-bit value is +25510 and, in this case, the final result
of 13410 is perfectly OK.

Of course, the 8051 CPU has no special knowledge of whether the data are signed
binary, unsigned binary, binary-coded decimal, ASCII, etc. Only you—the programmer—
knows for sure. The mechanism to manage different formats of data is provided through the
status bits in the PSW. To illustrate this, the addition is worked out below in binary.

11...11.
01100011 (ACC = 63H)

INSTRUCTION SET SUMMARY | 61

+00100011 (R3 = 23H)
10000110 (result stored in ACC = 86H)

The result is 10000110B = 86H. Note above that carries occurred out of bits 0, 1, 5, and
6. Carries did not occur out of bits 2, 3, 4, and 7. Because there was no carry out of bit 7,
the C (carry) bit in the PSW is not set after the addition.

As for the OV (overflow) bit, the following description appears in Appendix C for
the ADD instruction: "the OV bit is set if there is a carry out of bit 6 but not out of bit 7,
or a carry out of bit 7 but not out of bit 6; otherwise OV is cleared." This is a formal way
of saying, "the OV bit is set if the result is out of range for 8-bit signed numbers." In this
example, there was a carry out of bit 6 but not out of bit 7; therefore, the OV bit is set.
This makes sense if the data are signed, because the allowable range is -12810 to +12710

and the result of 9910 + 3510 is "out of range."

From the 8051 CPU's perspective, it is also possible that the data are binary-coded
decimal (only the programmer knows for sure!), and it will set or clear the auxiliary carry
bit accordingly. Since a carry did not occur out of bit 3, the AC bit is cleared.

Finally, the P bit in the PSW is set or cleared to establish even parity with the accu-
mulator. Because the result in the ACC has three bits equal to one, the P bit is set,
bringing the total to four - an even number. The final value in the PSW is 00000101B =
05H. Only the OV and P bits are set; the other bits are cleared (see Table 2-3).

The second question in this example is, "What is the content of the accumulator in
decimal after execution of this instruction?" And it is here that we delve into the important
concept of the meaning or interpretation of the data on which a CPU like the 8051 operates.
Because the original problem did not indicate a format or representation for the original data,
we cannot answer the question with certainty, hence the "?" in the solution. There are,
however, at least two possible answers. First, if we assume the original data are in unsigned
binary notation, then the result is "in range" (because C = 0) and the answer is 13410. Sec-
ond, if we assume the data are in signed binary notation using twos-complement notation,
then the correct answer is "out of range" (because OV = 1). The important point is that the
meaning or representation scheme in effect is not a characteristic of the CPU, but, rather, it
is determined by the way the data are managed by the software.

EXAMPLE Illustrate an instruction sequence to subtract the content of R6 from R7 and leave the
3.12 result in R7.

Solution

MOV A,R7
CLR C
SUBB A,R6
MOV R7,A

Discussion

For both addition and subtraction, the accumulator holds one of the values for the operation.
So, the first instruction above moves one of the bytes to the accumulator to prepare for
the operation. The second instruction clears the carry flag in the program status word. This
is required because the only form of the subtract instruction is SUBB—subtract with
borrow.

62 | CHAPTER 3

The operation subtracts from the accumulator the source byte and the carry bit. For subtract
operations, the carry bit serves as a "borrow" bit. If the state of the carry bit is unknown, it
must be explicitly cleared using CLR C before executing SUBB. The third instruction per-
forms the subtraction, leaving the result in the accumulator. The fourth instruction moves
the result into R7.

The 8051 provides powerful addressing of its internal memory space. Any location
can be incremented or decremented using direct addressing without going through the ac-
cumulator. For example, if internal RAM location 7FH contains 40H, then the instruction

INC 7FH

increments this value, leaving 41H in location 7FH.

EXAMPLE Suppose the 8051 did not have an instruction to directly increment an internal RAM
3.13 location. How could this operation be achieved?

Solution

MOVE A,direct
INC A
MOV direct,A

Discussion

The first instruction moves a byte of data from an internal RAM location to the accumula-
tor. The second instruction increments the value read (which is now in the accumulator),
and the third instruction writes the result back to internal RAM. Not only is this
instruction sequence longer and slower than the single-instruction equivalent (INC direct),
the previous value of the accumulator is lost.

One of the INC instructions operates on the 16-bit data pointer. Since the data
pointer generates 16-bit addresses for external memory, incrementing it in one operation is
a useful feature. Unfortunately, a decrement data pointer instruction is not provided and
requires a sequence of instructions such as the following:

DEC DPL ;DECREMENT LOW-BYTE OF DPTR
MOV R7,DPL ;MOVE TO R7
CJNE R7,#0FFH,SKIP ;IF UNDERFLOOR TO FF
DEC DPH ;DECREMENT HIGH-BYTE TOO

SKIP: (continue)

The high- and low-bytes of the DPTR must be decremented separately; however, the high-
byte (DPH) is only decremented if the low-byte (DPL) underflows from 00H to 0FFH.

The MUL AB instruction multiplies the accumulator by the data in the B register and
puts the 16-bit product into the concatenated B (high-byte) and accumulator (low-byte)
registers. DIV AB divides the accumulator by the data in the B register, leaving the 8-bit

INSTRUCTION SET SUMMARY | 63

quotient in the accumulator and the 8-bit remainder in the B register. For example, if A
contains 25 (19H) and B contains 6 (06H), the instruction

DIV AB

divides the content of A by the content of B. The A accumulator is left with the value 4
and the B accumulator is left with the value 1. (25 6 = 4 with a remainder of 1.)

EXAMPLE The accumulator contains 55H, the B register contains 22H, and the program status word
3.14 contains 00H. What are the contents of these registers after execution of the following

instruction?

MUL AB

Solution

ACC = 4AH, B = 0BH, PSW = 05H

Discussion

You might be able to compute the answer using a calculator; otherwise begin by express-
ing the original values in decimal: ACC = 55H = 8510 and B = 22H = 3410. The prod-
uct is 8510 x 3410 = 2,89010 = 0B4AH. The high byte (0BH) is placed in register B and
the low byte (4AH) is placed in the accumulator. The P bit in the PSW is set to establish
even parity with the accumulator. Since the result is greater than 25510, the overflow flag
is set, leaving the PSW containing 05H.

EXAMPLE The accumulator contains 1FH. What is the largest value that could be in register B such
3.15 that the OV bit would not be set after executing the following instruction?

MUL AB

Solution

08H

Discussion

The accumulator contains 1FH = 3110. The overflow flag is set following MUL if the

product is greater than 25510. The largest number that 3110 can be multiplied by without
the product exceeding 25510 is 810 = 08H. (Note 3110 x 810 = 24810, 3110 x 910 =
27910.)

For BCD (binary-coded decimal) arithmetic, ADD and ADDC must be followed by
a DA A (decimal adjust) operation to ensure the result is in range for BCD. Note that
DAA will not convert a binary number to BCD; it produces a meaningful result only as
the second step in the addition of two BCD bytes. For example, if A contains the BCD
value 59 (59H), then the instruction sequence

ADD A,#1
DA A

64 | CHAPTER 3

first adds 1 to A, leaving the result 5AH, then adjusts the result to the correct BCD value
of 60 (60H). (59 + 1 = 60.)

EXAMPLE Illustrate how to add two 4-digit binary-coded decimal numbers. The first is in internal
3.16 memory locations 40H and 41H, and the second is in locations 42H and 43H. The most-

significant digits are in locations 40H and 42H. Place the BCD result in locations 40H and
41H.

Solution

MOV A,41H
ADD A,42H
DA A
MOV 42H,A
MOV A,42H
ADDC A,40H
DA A

MOV 40H,A

Discussion

This is an example of "multiprecision arithmetic," whereby a CPU is called upon to per-
form arithmetic operations on data that are larger than the CPU's natural data size. Even
though the 8051's arithmetic instructions operate on bytes, it is possible to add or subtract
larger data, for example, 16 bits or 32 bits. This is also true for binary-coded decimal num-
bers. To add two 4-digit numbers, two byte additions are required.

The trick in multiprecision arithmetic is in propagating carries from byte to byte.
During addition, carries are naturally propagated from bit to bit within a byte, but from
byte to byte, a carry—if it occurs—is temporarily held in the C bit in the PSW. Since a
carry cannot occur into the low-order bytes, the first add instruction above is the generic
"ADD." However, "ADDC" is required for the second add operation to include the carry
that may have occurred from the low-order byte. Both add instructions are followed by
DA A to perform the necessary adjustment for binary-coded decimal values.

3.3.2 Logical Instructions

The 8051 logical instructions (see Appendix A) perform Boolean operations (AND, OR,
Exclusive OR, and NOT) on bytes of data on a bit-by-bit basis. If the accumulator
contains 00110101B, then the following AND logical instruction

ANL A,#01010011B

leaves the accumulator holding 00010001B. This is illustrated below.

01010022 (immediate data)
AND 00220102 (original value of A)

00010002 (result in A)

INSTRUCTION SET SUMMARY | 65

Since the addressing modes for the logical instructions are the same as those for
arithmetic instructions, the AND logical instruction can take several forms:

ANL A,55H (direct addressing)
ANL A,@R0 (indirect addressing)
ANL A,R6 (register addressing)
ANL A,#33H (immediate addressing)

All logical instructions using the accumulator as one of the operands execute in one
machine cycle. The others take two machine cycles.

Logical operations can be performed on any byte in the internal data memory space
without going through the accumulator. The "XRL direct,#data" instruction offers a quick
and easy way to invert port bits, as in

XRL P1,#0FFH

This instruction performs a read-modify-write operation. The eight bits at Port 1 are read;
then each bit read is exclusive ORed with the corresponding bit in the immediate data.
Since the eight bits of immediate data are all 1s, the effect is to complement each bit read

(e.g., A 1 = A). The result is written back to Port 1.

The rotate instructions (RL A and RR A) shift the accumulator one bit to the left or
right. For a left rotation, the MSB rolls into the LSB position. For a right rotation, the LSB
rolls into the MSB position. The RLC A and RRC A variations are 9-bit rotates using the
accumulator and the carry flag in the PSW. If, for example, the carry flag contains 1 and A
contains 00H, then the instruction

RRC A

leaves the carry flag clear and A equal to 80H. The carry flag rotates into ACC.7 and
ACC.0 rotates into the carry flag.

The SWAP A instruction exchanges the high and low nibbles within the
accumulator. This is a useful operation in BCD manipulations. For example, if the
accumulator contains a binary number that is known to be less than 10010, it is quickly
converted to BCD as follows:

MOV B,#10
DIV AB
SWAP A
ADD A,B

Dividing the number by 10 in the first two instructions leaves the tens digit in the low nib-
ble of the accumulator, and the ones digit in the B register. The SWAP and ADD instruc-
tions move the tens digit to the high nibble of the accumulator, and the ones digit to the
low nibble.

EXAMPLE Illustrate two ways to rotate the content of the accumulator three positions to the left
3.17 Discuss the pros and cons of each method in terms of memory requirements and speed of

execution.

66 | CHAPTER 3

Solution
(a) RL A

RL A
RL A

(b) SWAP A

RR A

Discussion

Solution (a) is the most obvious approach, whereas solution (b) uses a trick. The SWAP A
instruction swaps the low-order and high-order nibbles in the accumulator, and, as noted
in Appendix C, this is equivalent to a 4-bit rotate operation. To undo the fourth rotation, a
final rotate to the right is used.

Although the effect of solutions (a) and (b) is the same, they are slightly different in
terms of memory usage and execution speed. All instructions above are 1-byte, 1-cycle in-
structions (see Appendix C), so solution (a) uses three bytes of memory and takes three
CPU cycles to execute. Solution (b) uses only two bytes of memory and executes in two
CPU cycles. The difference may seem minuscule, but in the world of embedded control
systems, squeezing every last ounce out of a program is often a design requirement.

EXAMPLE Write an instruction sequence to reverse the bits in the accumulator. Bit 7 and bit 0 are
3.18 swapped, bit 6 and bit 1 are swapped, etc.

Solution
MOV R7,#8

LOOP: RLC A

XCH A,0F0H

RRC A

XCH A,0F0H

DJNZ R7,LOOP

XCH A,0F0H

Discussion

The gymnastics required in this example are sometimes called "dancing with bits." The
task may seem contrived, but it is amazing how often situations arise that necessitate
fiddling with the position of bits within bytes.

The approach taken in the solution is to build the new value in the B register by suc-
cessively shifting a bit out of the accumulator into the carry bit and then shifting the same
bit back into the B register. To reverse the bit pattern, the first shift is "to the left" and the
second shift is "to the right." Because the rotate instruction only operates on the accumu-
lator, the B register and the accumulator are exchanged (XCH) following each rotate. A fi-
nal XCH positions the correct result in the accumulator. Note: The B register is at direct
address 0F0H.

3.3.3 Data Transfer Instructions

3.3.3.1 Internal RAM The instructions that move data within the internal memory
spaces (see Appendix A) execute in either one or two machine cycles. The instruction format

MOV <destination>, <source>

INSTRUCTION SET SUMMARY | 67

allows data to be transferred between any two internal RAM or SFR locations without going
through the accumulator. Remember, the upper 128 bytes of data RAM (8032/8052) are
accessed only by indirect addressing, and the SFRs are accessed only by direct addressing.

A feature of the MCS-51TM architecture differing from most microprocessors is that the
stack resides in on-chip RAM and grows upward in memory, toward higher memory addresses.
The PUSH instruction first increments the stack pointer (SP), then copies the byte into the stack.
PUSH and POP use direct addressing to identify the byte being saved or restored, but the stack
itself is accessed by indirect addressing using the SP register. This indirect addressing means the
stack can use the upper 128 bytes of internal memory on the 8032/8052.

The upper 128 bytes of internal memory are not implemented in the 8031/8051 de-
vices. With these devices, if the SP is advanced above 7FH (127), the PUSHed bytes are
lost and the POPed bytes are indeterminate.

EXAMPLE The stack pointer contains 07H, accumulator A contains 55H, and accumulator B contains
3.19 4AH. What internal RAM locations are altered, and what are their new values after

executing the following instructions?

PUSH ACC

PUSH 0F0H

Solution

Address Contents

08H 55H
09H 4AH
81H (SP) 09H

Discussion

The first instruction pushes the accumulator on the stack. The stack pointer is incremented
before the push; so, the content of A (55H) is written to internal RAM location 08H. The
second instruction pushes the B accumulator, which is located at internal RAM address
0F0H, on the stack. Again, the stack pointer is incremented before the push, so the content
of B (4AH) is written to internal RAM location 09H. The stack pointer is incremented
twice as a result of the two instructions, so its final value is 09H.

Data transfer instructions include a 16-bit MOV to initialize the data pointer (DPTR)
for look-up tables in program memory, or for 16-bit external data memory accesses.

EXAMPLE What is the address of the data pointer in internal RAM?

3.20 Solution

DPH is at address 83H. DPL is at address 82H.

Discussion

The data pointer (DPTR) is a 16-bit register occupying two locations in internal RAM. The high
byte of the data pointer (DPH) is at address 83H, and the low byte (DPL) is at address 82H.

The instruction format

XCH A,<source>

68 | CHAPTER 3

causes the accumulator and the addressed byte to exchange data. An exchange "digit" in-
struction of the form

XCHD A,@Ri

is similar, but only the low-order nibbles are exchanged. For example, if A contains 0F3H,
R1 contains 40H, and internal RAM address 40H contains 5BH, then the instruction

XCHD A,@Rl

leaves A containing 0FBH and internal RAM location 40H containing 53H.

EXAMPLE What are the contents of the A and B accumulators after execution of the following
3.21 instructions?

MOV 0F0H,#12H
MOV R0,#0F0H
MOV A,#34H

XCH A,0F0H

XCHD A,@R0

Solution

A = 14H, B = 32H

Discussion

The first three instructions set the stage for this example, finishing with A = 34H, B =
12H, and R0 = 0F0H. Recall that the B accumulator is located at internal RAM location
0F0H. The fourth instruction exchanges A and B, leaving A = 12H and B = 034H. The
fifth instruction swaps the low-order digits of A and B, leaving A = 14H and B = 32H.

3.3.3.2 External RAM The data transfer instructions that move data between in-
ternal and external memory use indirect addressing. The indirect address is specified using
a 1-byte address (@Ri, where Ri is either R0 or R1 of the selected register bank), or a 2-
byte address (@DPTR). The disadvantage in using 16-bit addresses is that all eight bits of
Port 2 are used as the high-byte of the address bus. This precludes the use of Port 2 as an
I/O port. On the other hand, 8-bit addresses allow access to a few Kbytes of RAM, without
sacrificing all of Port 2. (See Chapter 2, "Accessing External Memory.")

All data transfer instructions that operate on external memory execute in two
machine cycles and use the accumulator as either the source or destination operand.

The read and write strobes to external RAM (RD and WR) are activated only during
the execution of a MOVX instruction. Normally, these signals are inactive (high), and if
external data memory is not used, they are available as dedicated I/O lines.

EXAMPLE Illustrate an instruction sequence to read the content of external RAM locations 10F4H
3.22 and 10F5H and place the values read in R6 and R7, respectively.

Solution

MOV DPTR,#10F4H
MOVX A,@DPTR

INSTRUCTION SET SUMMARY | 69

MOV R6,A
INC DPTR
MOVX A,@DPTR
MOV R7,A

Discussion
The first instruction initializes the data pointer with the first of the two external addresses to be
read. The second instruction reads a byte from external memory location 10F4H and places it in
the accumulator. The third instruction transfers the byte read to register 6. Note that the MOVX
instruction must use the accumulator as either the source or destination of data. The fourth in-
struction increments the data pointer, leaving it pointing to the second of the two external ad-
dresses to be read. The fifth instruction reads a byte from external memory location 10F4H and
places it in the accumulator. The sixth instruction transfers the byte read to register 7.

3.3.3.3 Look-Up Tables Two data transfer instructions are available for reading look-
up tables in program memory. Since they access program memory, the look-up tables can only
be read, not updated. The mnemonic is MOVC for "move constant." MOVC uses either the
program counter or the data pointer as the base register and the accumulator as the offset.

The instruction

MOVC A,@A+DPTR

can accommodate a table of 246 entries, numbered 0 through 255. The number of the de-
sired entry is loaded into the accumulator and the data pointer is initialized to the
beginning of the table. The instruction

MOVC A,@A+PC

works the same way, except the program counter is the base address. The table is usually ac-
cessed through a subroutine. First, the number of the desired entry is loaded into the accumu-
lator, and then the subroutine is called. The setup and call sequence would be coded as follows:

MOV A,#ENTRY_NUMBER
CALL LOOKUP

.

.

.
LOOKUP: INC A

MOVC A,@A+PC
RET

TABLE: DB data, data, data, data, ...

The table immediately follows the RET instruction in program memory. The INC instruc-
tion is needed because the PC points to the RET instruction when MOVC executes. Incre-
menting the accumulator will effectively bypass the RET instruction when the table look-up
takes place.

Note however that even though we would expect to get a table of 256 entries when
using this technique, we only get 255 entries in this case since we lose one entry due to the
effect of the INC A instruction. Consider the entry number of 255 that is moved into the ac-
cumulator. The INC A instruction increments it by 1, causing the value 255 to recycle back

70 | CHAPTER 3

to 0 since the accumulator is 8 bits in size. The next instruction, MOVC A,@A+PC, would
attempt to load the accumulator with the value of RET, which is invalid. Therefore, valid
entries are only from 0 to 254.

EXAMPLE Write a subroutine called SQUARE to compute the square of an integer between 0 and
3.23 9. Enter the subroutine with the integer in A,and return with the square of the integer in A.

Write two versions of the subroutine: (a) using a look-up table, and (b) without using a
lookup table. Then (c) illustrate a call sequence to convert 6 to its square, 36.

Solution

a. Using a look-up table:

SQUARE: INC A

MOVC A,@A+PC
RET

TABLE: DB 0,1,4,9,16,25,36,49,64,81

b. Without using a look-up table:

SQUARE: PUSH 0F0H
MOV 0F0H,A
MUL AB
POP 0F0H
RET

c. Call sequence:

MOV A,#6
CALL SQUARE

Discussion

The solution in (a) and the call sequence in (c) are straightforward implementations of a lookup
table in program memory. For this example, however, there is an interesting alternative ap-
proach, as shown in (b). By copying the content of A to the B accumulator (in internal RAM
location 0FFH), and then multiplying B times A using MUL AB, the square is computed and
left in A. Since the B accumulator is overwritten by the second instruction, it is first saved on
the stack and then restored from the stack before returning from the subroutine. The
PUSH/POP instructions may not be needed, depending on the context; however, it is good
programming practice to design subroutines to have as few side effects as possible.

In comparing solutions (a) and (b), we find an interesting tradeoff. Solution (a) is 13
bytes, including the look-up table, whereas solution (b) is only eight bytes. However, so-
lution (a) executes in five CPU cycles, whereas solution (b) executes in 11 cycles. The
tradeoff is that solution (a) is faster (which is good!) but consumes more memory (which
is bad!), compared with solution (b), which is slower (which is bad!) but consumes less
memory (which is good!). This tradeoff would be more pronounced if the look-up table
was large, because every entry adds one byte to the size of the routine.

In many situations, the relationship between the index to a table and the entries
within a table is not as simple as in this example, and using a look-up table is the only
viable implementation.

INSTRUCTION SET SUMMARY | 71

3.3.4 Boolean Instructions

The 8051 processor contains a complete Boolean processor for single-bit operations. The
internal RAM contains 128 addressable bits, and the SFR space supports up to 128 other
addressable bits. All port lines are bit-addressable, and each can be treated as a separate
single-bit port. The instructions that access these bits are not only conditional branches but
also a complete repertoire of move, set, clear, complement, OR, and AND instructions. Such
bit operations—one of the most powerful features of the MCS-51TM family of micro-
controllersare not easily obtained in other architectures with byte-oriented operations.

The available Boolean instructions are shown in Appendix A. All bit accesses use direct
addressing with bit addresses 00H-7FH in the lower 128 locations, and bit addresses 80H-
0FFH in the SFR space. Those in the lower 128 locations at byte addresses 20H-2FH are
numbered sequentially from bit 0 of address 20H (bit 0FH) to bit 7 of address 2FH (bit 7FH).

Bits may be set or cleared in a single instruction. Single-bit control is common for
many I/O devices, including output to relays, motors, solenoids, status LEDs, buzzers,
alarms, loudspeakers, or input from a variety of switches or status indicators. If an alarm is
connected to Port 1 bit 7, for example, it might be turned on by setting the port bit

SETB P1.7

and turned off by clearing the port bit

CLR Pl.7

The assembler will do the necessary conversion of the symbol “P1.7" into the correct bit
address, 97H.

Note how easily an internal flag can be moved to a port pin:

MOV C,FLAG
MOV P1.0,C

In this example, FLAG is the name of any addressable bit in the lower 128 locations or the
SFR space. An I/O line (the LSB of Port 1, in this case) is set or cleared, depending on
whether the flag bit is 1 or 0.

The carry bit in the program status word (PSW) is used as the single-bit
accumulator of the Boolean processor. Bit instructions that refer to the carry bit as "C"
assemble as carry-specific instructions (e.g., CLR C). The carry bit also has a direct
address, since it resides in the PSW register, which is bit-addressable. Like other bit-
addressable SFRs, the PSW bits have predefined mnemonics that the assembler will
accept in lieu of the bit address. The carry flag mnemonic is "CY," which is defined as bit
address 0D7H. Consider the following two instructions:

CLR C
CLR CY

Both have the same effect; however, the former is a 1-byte instruction, whereas the latter
is a 2-byte instruction. In the latter case, the second byte is the direct address of the
specified bit—the carry flag.

72 | CHAPTER 3
Logical operations such as AND, OR, NAND, NOR, and NOT are easy to
implement for single-bit variables. Furthermore, the variables may be input or output
signals on the 8051's I/O ports. Thus, the state of an I/O pin may be directly read or written
accompanied by a Boolean operation. Suppose one wanted to compute the logical AND of
the input signals on bit 0 and bit 1 of Port 1 and output the result to bit 2 of Port 1. This
logical relationship is illustrated in Figure 3-4.

The following instruction sequence creates this logical operation:

LOOP: MOV C,P1.0 ;n1 = 1 cycle

ANL C,P1.1 ;n2 = 2 cycles

MOV P1.2,C ;n3 = 2 cycles

SJMP LOOP ;n4 = 2 cycles

Bits P1.0 and P1.1 are continuously read with the logical AND of the result continuously
presented on P1.2.

If the logic operation in Figure 3-4 is implemented using a typical electronic logic
circuit, such as a 74AL508, then the input-to-output propagation delay is on the order of 7
ns. This is the time from an input signal transition to the correct logic level appearing at
the output. What is the worst-case propagation delay for the circuit in Figure 3-4 if imple-
mented using the software above? Figure 3-5 will assist in answering this question. The
worst-case scenario is that P1.0 changes just after the first instruction, shown at "A" in the
figure. The change is not sensed until the next pass through the loop. The correct output
state appears at "B" in the figure. The solid line in Figure 3-5 illustrates the sequence of in-
structions for the worst-case scenario. The number of CPU cycles from "A" to "B," fol-
lowing the solid line, is 11. At 12 MHz operation the worst-case delay is 11 µs. Obviously
there is "no contest" in comparing the speed of a microcontroller with speed of electronic
logic circuits. The software implementation for Figure 3-4 is about a thousand times
slower than a 74LS08 AND gate!

Note that the Boolean instructions include ANL (AND logical) and ORL (OR logical)
operations, but not the XRL (exclusive OR logical) operation. An XRL operation is simple

FIGURE 3-4

Simple implementation of a logical

AND operation
FIGURE 3-5

Instruction sequence for worst-

case propagation delay

INSTRUCTION SET SUMMARY | 73

to implement. Suppose, for example, it is required to form the exclusive OR of two bits,
BIT1 and BIT2, and leave the result in the carry flag. The instructions are shown below.

MOV BIT1
JNB BIT2,SKIP
CPL C

SKIP: (continue)

First, BIT1 is moved to the carry flag. If BIT2 = 0, then C contains the correct re-
sult; that is, BIT1 BIT2 = BIT1 if BIT2 = 0. If BIT2 = 1, C contains the complement of
the correct result. Complementing C completes the operation.

3.3.4.1 Bit Testing The code in the example above uses the JNB instruction, one
of a series of bit-test instructions that jump if the addressed bit is set (JC, JB, JBC) or if the
addressed bit is not set (JNC, JNB). In the above case, if BIT2 = 0 the CPL instruction is
skipped. JBC (jump if bit set then clear bit) executes the jump if the addressed bit is set,
and also clears the bit; thus, a flag can be tested and cleared in a single instruction.

All PSW bits are directly addressable, so the parity bit or the general purpose flags,
for example, are also available for bit-test instructions.

3.3.5 Program Branching Instructions

As evident in Appendix A, there are numerous instructions to control the flow of
programs, including those that call and return from subroutines or branch conditionally or
unconditionally. These possibilities are enhanced further by the three addressing modes for
the program branching instructions.

There are three variations of the JMP instruction: SJMP, LJMP, and AJMP (using
relative, long, and absolute addressing, respectively). Intel's assembler (ASM51) allows
the use of the generic JMP mnemonic if the programmer does not care which variation is
encoded. Assemblers from other companies may not offer this feature. The generic JMP
assembles to AJMP if the destination contains no forward reference and is within the same
2K page (as the instruction following the AJMP). Otherwise, it assembles to LJMP. The
geneneric CALL instruction (see below) works the same way.

The SJMP instruction specifies the destination address as a relative offset, as shown
in the earlier discussion on addressing modes. Since the instruction is two bytes long (an
opcode plus a relative offset), the jump distance is limited to -128 to +127 bytes relative to
the address following the SJMP.

The LJMP instruction specifies the destination address as a 16-bit constant. Since
the instruction is three bytes long (an opcode plus two address bytes), the destination
address can be anywhere in the 64K program memory space.

The AJMP instruction specifies the destination address as an 11-bit constant. As with
SJMP, this instruction is two bytes long, but the encoding is different. The opeode contains
three of the 11 address bits, and byte 2 holds the low-order eight bits of the destination ad-
dress. When the instruction is executed, these 11 bits replace the low-order 11 bits in the
PC, and the high-order five bits in the PC stay the same. The destination, therefore, must
be within the same 2K block as the instruction following the AJMP. Since there is 64K of

74 | CHAPTER 3

code memory space, there are 32 such blocks, each beginning at a 2K address boundary
(0000H, 0800H, 1000H, 1800H, etc., up to 0F800H; see Figure 3-3).

In all cases the programmer specifies the destination address to the assembler in the
usual way - as a label or as a 16-bit constant. The assembler will put the destination
address into the correct format for the given instruction. If the format required by the
instruction will not support the distance to the specified destination address, a "destination
out of range" message is given.

3.3.5.1 Jump Tables The JMP @A+DPTR instruction supports case-dependent
jumps for jump tables. The destination address is computed at execution time as the sum
of the 16-bit DPTR register and the accumulator. Typically the DPTR is loaded with the
address of a jump table, and the accumulator acts as an index. If, for example, five "cases"
are desired, a value from 0 through 4 is loaded into the accumulator and a jump to the
appropriate case is performed as follows:

MOV DPTR,#JUMP_TABLE
MOV A,#INDEX_NUMBER
RL A
JMP @A+DPTR

The RL A instruction above converts the index number (0 through 4) to an even number in
the range 0 through 8 because each entry in the jump table is a 2-byte address:

JUMP_TABLE: AJMP CASE0
AJMP CASE1
AJMP CASE2
AJMP CASE3

EXAMPLE Suppose the jump table above begins at code memory location 8100H with the following
3.24 memory assignments:

Address Content
8100 0l
810l B8
8102 0l
8103 43
8104 41
8105 76
8106 El

8107 F0

a. What is the beginning and ending address of the 2K block of code memory within
which these instructions reside?

b. At what addresses do CASE0 through CASE3 begin?

Solution

a. 8000H to 87FFH

b. CASE0 begins at address 80B8H
CASE1 begins at address 8043H

INSTRUCTION SET SUMMARY | 75

CASE2 begins at address 8276H
CASE3 begins at address 87F0H

Discussion

This example has more to do with absolute addressing than with jump tables. The jump
table consists of a series of four ACALL instructions. Since this instruction uses absolute
addressing, the jump destinations must be within the same 2K page as the ACALL
instructions. A 2K page is a block of code memory with the upper five address bits the
same. The upper five bits in 8100H are 1000B. The other 11 address bits for each CASE
routine consist of the upper three bits in the ACALL opcode and the second byte of the
ACALL instruction. Consider ACALL CASE3, which is located in locations 8106H (21H)
and 8107H (0F0H). The upper three bits of the opcode are 111B and the second byte of the
instruction is 11110000B. Concatenating the three binary patterns in the order just given
yields 10000111 11110000B = 87F0H, the address of the CASE3 routine.

3.3.5.2 Subroutines and Interrupts There are two variations of the CALL in-
struction: ACALL and LCALL, using absolute and long addressing, respectively. As with
JMP, the generic CALL mnemonic may be used with Intel's assembler if the programmer
does not care which way the address is encoded. Either instruction pushes the content of the
program counter on the stack and loads the program counter with the address specified in the
instruction. Note that the PC will contain the address of the instruction following the CALL
instruction when it gets pushed on the stack. The PC is pushed on the stack low-byte first,
high-byte second. The bytes are popped from the stack in the reverse order. For example, if
an LCALL instruction is in code memory at locations 1000H-1002H and the SP contains
20H, then LCALL (a) pushes the return address (1003H) on the internal stack, placing 03H
in 21H and 10H in 22H; (b) leaves the SP containing 22H; and (c) jumps to the subroutine by
loading the PC with the address contained in bytes 2 and 3 of the instruction.

EXAMPLE The following instruction

3.25 LCALL COSINE

is in code memory at addresses 0204H through 0206H, and the subroutine COSINE
begins at code memory address 043AH. Assume the stack pointer contains 3AH just
before this instruction executes. What internal RAM locations are altered, and what are
their new values after execution of the LCALL instruction?

Solution

Address Contents
3BH 07H
3CH 02H
81H (SP) 3CH

Discussion

Since the LCALL instruction is three bytes long, the instruction following it is at code mem-
ory location 0207H. This is the address to which the program must return at the end of the
subroutine, and it is the address that is saved on the stack before branching to the subroutine.

76 | CHAPTER 3

Since the stack pointer contains 3AH initially, and, since it is incremented before writing
to the stack, the low byte of the return address (02H) is saved at internal memory location
3BH, and the high byte of the return address (02H) is saved at internal memory location
3CH. Since two bytes are saved on the stack, the SP is incremented twice and contains
3CH after the LCALL instruction executes. Note that the stack pointer is a special
function register located at internal RAM address 81H.

The LCALL and ACALL instructions have the same restrictions on the destination
address as the LJMP and AJMP instructions just discussed.

Subroutines should end with an RET instruction, which returns execution to the in-
struction following the CALL. There is nothing magical about the way the RET
instruction gets back to the main program. It simply "pops" the last two bytes off the stack
and places them in the program counter. It is a cardinal rule of programming with
subroutines that they should always be entered with a CALL instruction, and they should
always be exited with a RET instruction. Jumping in or out of a subroutine any other way
usually fouls up the stack and causes the program to crash.

RETI is used to return from an interrupt service routine (ISR). The only difference
between RET and RETI is that RETI signals the interrupt control system that the interrupt
in progress is done. If there is no interrupt pending at the time RETI is executed, then
RETI is functionally identical to RET. Interrupts and the RETI instruction are discussed in
more detail in Chapter 6.

EXAMPLE The stack pointer contains 1CH just prior to the execution of
3.26

RET

at the end of a subroutine. What is the value of the stack pointer after execution of this in-

struction?

Solution

1CH

Discussion

The return address for the subroutine is 16 bits or two bytes. The purpose of the RET in-
struction is to retrieve two bytes from the stack and place them in the program counter,
thus allowing the program to continue executing at the location following the call
instruction that leads to the subroutine. Regardless of what address this may be, the stack
pointer contains two less than its value before RET executed.

EXAMPLE XORing Bits
3.27 The 8051 instruction set does not include an instruction to XOR two bit values. Write a

subroutine XRB that effectively behaves as an instruction to XOR two bits in the form
XRB C, P. This means that the two bit values are stored in C and P, respectively, prior to
the calling of the subroutine, and the XORed result should be put back in C.

INSTRUCTION SET SUMMARY | 77

Solution

XRB: MOV 20H,C ;backup the first bit, x

ANL C,/P ;C = x y

MOV 21H,C ;backup partial result, x y

MOV C,P ;put second bit, y in C

ANL C,/20H ;C = y x

ORL C,21H ;C = y x + x y

Discussion

There are three approaches to solve this problem. In this example, we use the fact that
xy = x y + y x. The other two cases are left as an exercise for the reader in the prob-
lems section:

 Change each bit into a byte and then do XOR on the bytes
 Use JB and JNB.

3.3.5.3 Conditional Jumps The 8051 offers a variety of conditional jump in-
structions. All of these specify the destination address using relative addressing and so are
limited to a jump distance of -128 to +127 bytes from the instruction following the con-
ditional jump instruction. Note, however, that the user specifies the destination address the
same way as with the other jumps, as a label or 16-bit constant. The assembler does the rest.

There is no 0-bit in the PSW. The JZ and JNZ instructions test the accumulator data
for that condition.

The DJNZ instruction (decrement and jump if not zero) is for loop control. To exe-
cute a loop N times, load a counter byte with N and terminate the loop with a DJNZ to the
beginning of the loop, as shown below for N = 10.

MOV R7,#10

LOOP: (begin loop)

.

.

.
(end loop)
DJNZ R7,LOOP
(continue)

The CJNE instruction (compare and jump if not equal) is also used for loop control.
Two bytes are specified in the operand field of the instruction, and the jump is executed
only if the two bytes are not equal. If, for example, a character has just been read into the
accumulator from the serial port and it is desired to jump to an instruction identified by the
label TERMINATE if the character is CONTROL-C (03H), then the following instructions
could be used:

CJNE A,#03H,SKIP
SJMP TERMINATE

SKIP: (continue)

78 | CHAPTER 3

Since the jump occurs only if A CONTROL-C, a skip is used to bypass the terminating
jump instruction except when the desired code is read.

Another application of this instruction is in "greater than" or "less than" comparisons.
The two bytes in the operand field are taken as unsigned integers. If the first is less than
the second, the carry flag is set. If the first is greater than or equal to the second, the carry
flag is cleared. For example, if it is desired to jump to BIG if the value in the accumulator
is greater than or equal to 20H, the following instructions could be used:

CJNE A,#20H,$+3
JNC BIG

The jump destination for CJNE is specified as "$+3." The dollar sign ($) is a special
assembler symbol representing the address of the current instruction. Since CJNE is a 3-byte
instruction, "$+3" is the address of the next instruction, JNC. In other words, the CJNE in-
struction follows through to the JNC instruction regardless of the result of the compare. The
sole purpose of the compare is to set or clear the carry flag. The JNC instruction decides
whether or not the jump takes place. This example is one instance in which the 8051 approach
to a common programming situation is more awkward than with most microprocessors; how-
ever, as we shall see in Chapter 7, the use of macros allows powerful instruction sequences,
such as the example above, to be constructed and executed using a single mnemonic.

SUMMARY

This chapter has presented the 8051 instruction set. The reader is encouraged to refer to
Appendix C for more examples of using this instruction set. 0f course, nothing beats prac-
tice so the reader should really try out as many programming examples as possible. The
next three chapters will discuss more programming examples in terms of interacting with
the 8051's on-chip peripherals: the timers, the serial port, and the interrupts.

PROBLEMS

3.1 What are the hexadecimal bytes for the following instructions?
a. INC DPTR

b. MOV A,#-2

c. MOVX @DPTR,A

d. CJNE A,#0DH,$+3

e. PUSH ACC

f. SETB P2.2

3.2 What are the hexadecimal bytes for the following instructions?
a. MOV DPH,#84H

b. JNB ACC.0,$

c. POP DPH

d. MOV A,#'='

INSTRUCTION SET SUMMARY | 79

e. XLR A,#'S'

f. CLR C

3.3 What instructions are represented by the following machine language bytes?
a. 07EH, 002H

b. 0C2H, 097H

c. 013H

d. 0F6H

e. 022H

f. 090H, 080H, 030H

3.4 What instructions are represented by the following machine language bytes?
a. 0EFH

b. 012H, 080H, 050H

c. 0F5H, 08DH

d. 004H

e. 083H

f. 075H, 0BAH, 0E7H

3.5 List all the 8051's 3-byte instructions with an opcode ending in 5H.
3.6 List all the 8031's 2-byte instructions beginning with 2H.
3.7 Illustrate how the content of internal address 50H could be transferred to the

accumulator, using indirect addressing.
3.8 Illustrate two ways to transfer the content of the accumulator to internal RAM

address 3CH.
3.9 What opcode is undefined on the 8051?
3.10 How many opcodes are defined on the 8052?
3.11 The following is an 8051 instruction:

MOV 50H,#0FFH

a. What is the opcode for this instruction?
b. How many bytes long is this instruction?
c. Explain the purpose of each byte of this instruction.
d. How many machine cycles are required to execute this instruction?
e. If an 8051 is operating from a 16 MHz crystal, how long does this instruction

take to execute?

3.12 The following is an 8051 instruction:

CJNE A,#'Q',AHEAD

a. What is the opcode for this instruction?
b. How many bytes long is this instruction?
c. Explain the purpose of each byte of this instruction.
d. How many machine cycles are required to execute this instruction?
e. If an 8051 is operating from a 10 MHz crystal, how long does this instruction

take to execute?

3.13 What is the relative offset for the instruction

SJMP AHEAD

if the instruction is in locations 0400H and 0401H, and the label AHEAD
represents the instruction at address 041FH?

INSTRUCTION SET SUMMARY | 81

(a) (b) (c)

FIGURE 3-6

Logic gate programming problems. (a) 3-input NOR. (b) 8-input NAND. (c) 3-gate logic operation.

3.26 Assume the PSW contains 0C0H and accumulator A contains 40H just before the
following instruction executes:

RLC A

What is the content of accumulator A after this instruction executes?
3.27 Assume the PSW contains 78H and the accumulator contains 81H. What is the con-

tent of the accumulator after the following instruction executes?

RRC A

3.28 What instruction sequence could be used to create a 5 µs low-going pulse on P1.7?
Assume P1.7 is high initially and the 8041 is operating from a 12 MHz crystal.

3.29 Write a program to create an 83.3 kHz square wave on P1.0. (Assume 12 MHz
operation.)

3.30 Write a program to generate a 4 µs active-high pulse on P1.7 every 200 µs.
3.31 Write programs to implement the logic operations shown in Figure 3-6. For each

program, what is the worst-case propagation delay from an input transition to an
out-put transition? Assume 12 MHz operation.

3.32 Write programs to implement the logic operations shown in Figure 3-7. For each
program, what is the worst-case propagation delay from an input transition to an
output transition? Assume 12 MHz operation.

3.33 What is the content of accumulator A after the following instruction sequence
executes?

MOV A,#7FH

MOV 50H,#29H

FIGURE 3-7

Logic gate programming problems. (a) 2-gate logic circuit. (b) 3-gate logic circuit.(c) 4-input NOR.

80 | CHAPTER 3

SJMP BACK

if the instruction is in locations 0A051H and 0A041H, and the label BACK
represents the instruction at address 9FE0H?

3.15 Assume the instruction
AJMP AHEAD

is in code memory at addresses 2FF0H and 2FF1H, and the label AHEAD corresponds
to an instruction at address 2F96H. What are the hexadecimal machine language bytes
for this instruction?

3.16 Assume the instruction
ACALL FACTORIAL

is in code memory at locations 06F5H and 06F5H, and the label FACTORIAL
corresponds to a subroutine beginning at address 07ABH. What are the machine
language bytes for this instruction?

3.17 At a certain point in a program, it is desired to jump to the label EXIT if the
accumulator equals the carriage return ASCII code. What instruction(s) would be
used?

3.18 At a certain point in a program, it is desired to jump to the label EXIT if the
accumulator equals the ASCII code for 'Q' or 'q,' or continue on otherwise. What
instruction(s) would be used?

3.19 The instruction
SJMP BACK

is in code memory at address 0100H and 0101H and the label BACK corresponds to
an instruction at address 00AEH. What are the hexadecimal machine language bytes
for this instruction?

3.20 The instruction
CJNE R7,#'Z',NOTZED

is in code memory at addresses 022AH through 022CH. What are the machine
language bytes for this instruction?

3.21 What does the following instruction do?
SETH 0D7H

What is a better way to perform the same operation? Why?
3.22 What is the difference between the following two instructions?

INC A

INC ACC

3.23 What are the machine language bytes for the instruction

LJMP ONWARD

if the label ONWARD represents the instruction at address 0A0F6H?
3.24 Assume accumulator A contains 4AH. What is the result in accumulator A after the

following instruction executes?
XRL A,#0FFH

3.25 Assume the accumulator contains 29H. What is the content of the accumulator after
the following instruction executes?

ORL A,#47H

82 | CHAPTER 3

MOV R0,#20H
XCHD A, @R0

3.34 What are the machine-language bytes for the following instruction?

SETB P2.6

3.35 What instruction sequence could be used to copy Flag 0 in the PSW to the port pin
P1.5?

3.36 Under what circumstances will Intel's assembler (ASM51) convert a generic JMP
instruction to LJMP?

3.37 The 8051 internal memory is initialized as follows immediately prior to the execution
of an RET instruction:

Internal
Address Contents SFRs Contents

0B 9A SP 0B

0A 78 PC 0200

09 56 A 55

08 34

07 12

What is the content of the PC after the RET instruction executes?
3.38 An 8051 subroutine is shown below:

SUB: MOV R0,#20H
LOOP: MOV @R0,#0

INC R0
CJNE R0,#80H,LOOP
RET

a. What does this subroutine do?
b. In how many machine cycles does each instruction execute?
c. How many bytes long is each instruction?
d. Convert the subroutine to machine language.
e. How long does this` subroutine take to execute? (Assume 12 MHz operation.)

3.39 A 4-bit DIP switch and a common-anode 7-segment LED are connected to an 8051 as
shown in Figure 3-8. Write a program that continually reads a 4-bit code from the

FIGURE 3-8

Interface to a DIP switch and 7-segment LED

INSTRUCTION SET SUMMARY | 83

DIP switch and updates the LEDs to display the appropriate hexadecimal character.
For example, if the code 1100B is read, the hexadecimal character "C" should ap-
pear; thus, segments a through g, respectively, should be ON, OFF, OFF, ON, ON,
ON, and OFF. Note that setting an 8041 port pin to"1" turns the corresponding seg-
ment "ON." (See Figure 3-8.)

3.40 What type of move instruction would you use to move a value into:
a. internal data memory
b. internal code memory
c. external data memory
d. external code memory

3.41 What is a look-up table? What are the advantages of using look-up tables?
3.42 What is the difference between the two instructions below? Describe how each one

works in detail.
MOV A,@R0
MOV A,R0

3.43 For the assembly language program given below, find the memory locations affected,
and what are the final contents of these affected locations.

MOV R0,#10H
REP: MOV @R0,#55H

INC R0
CJNE R0,#20H,REP
MOV R1,#00H

LOOP: MOV @R1,#AAH
DEC R1
CJNE R1,#5FH,LOOP

END

3.44 For the following assembly language program, find the memory locations affected,
and what are the new values.

MOV R0,#7FH

LOOP: MOV @R0,#7FH
DEC R0
CJNE R0,#20H,LOOP
MOV R1,#00H

NEXT: MOV @R1,#00H
INC R1
CJNE R1,#5FH,NEXT
END

3.45 Suppose the following memory locations contain the initial values as follows:

84 | CHAPTER 3

What are the contents of the memory locations 30H, 78H and 7FH after the
execution of each instruction below? Why? (Assume each instruction is independent
of the other.)

a. CPL 7FH

b. CLR 78H

c. MOV 7FH,78H

3.46 Write an assembly language program to add all the numbers in internal RAM locations
starting from 30H to 6FH. Store the result in internal RAM location 70H. Write
comments for each line of code.

3.47 The factorial operation, denoted by the symbol 1' is often found in mathematics, es-
pecially in calculations of probability. For example, 5! = 5 x 4 x 3 x 2 x 1. Write an
assembly language program to calculate the factorial of a number that is stored in RAM
location 44H. Put the result of the calculation into RAM location 77H.

3.48 The accumulator A contains a 5-bit number, x (excluding the number 0). Write a
program to use a look-up table to find the result of 20 log10 x. Round your
precomputations to integers.

3.49 Write an assembly language program using look-up tables to calculate the exponential
function ex of a value x in the accumulator. The result (rounded off to the nearest
integer) should be returned in R1 (high byte) and R0 (low byte). For example, if you
have the value 2 in the accumulator, your result should be R1 = 0 and R0 = 7.

3.50 Write an assembly language program to perform the multiplication of two numbers in
R0 and R1. DO NOT USE the MUL AB instruction! Instead, use other instructions to
do so. The higher-order byte of the result should be put in R3 while the lower-order
byte of the result should be put in R2.

3.51 What are subroutines? Explain the advantages of using subroutines in your assembly
language programs.

3.52 The term nested subroutines refers to the use of two or more subroutines, each one
called within another.

a. Write a subroutine called POW that calculates the result of the number in
theaccumulator A raised to the power of a number stored in the B register. For
example, if A = 2 and B = 3, then your result should be 23 = 8. Return the 16-bit
answer in the accumulator, A (for the low byte) and B register (for the high byte).

b.Then, write another subroutine called CALCULATE that calculates the value of 34

- 23 and returns the 16-bit answer in A (low byte) and B (high byte). Your
subroutine should call the POW subroutine to do the exponentiations (raising a
number to the power of another number).

3.53 Write a subroutine called SUM that calculates the sum of two numbers in the accu-
mulator A and the B register, and returns the answer in the accumulator, A. Then, write
another subroutine called TOTAL that calculates the sum of three numbers in R1, R2,
and R3. Do not use the ADD instruction in the TOTAL subroutine. Instead, you
should call the SUM subroutine to do the additions. Return the total sum in R5.

3.54 The 8051 provides the XCHD instruction to exchange the lower-order nibbles of two
values. Write a subroutine XCHH that exchanges the higher-order nibbles of the two
values in A and B.

INSTRUCTION SET SUMMARY | 85

3.55 Write a subroutine XRB to compute the XOR of two bit values in C and P. The result
should be stored in C. Write comments for each line of code.

3.56 The subroutine GUESSME below can be used to perform a very useful operation that
is not provided by the 8051's built-in instructions.

a. Write the comments for each line of code.
b.Explain what you think the subroutine is used for.

GUESSME: CLR C
RRC A
DJNZ R0,GUESSME END

3.57 Write an assembly language program to perform division of two numbers in R0 and
R1. The quotient should be stored in A and the remainder in B. DO NOT USE the
DIV AB instruction!

3.58 Example 3.27 considered a subroutine XRB that effectively behaves as an instruction
to XOR two bits in the form XRB C, P. This means that the two bit values are stored
in C and P prior to the calling of the subroutine, and the X0Red result should be put
back in C. Rewrite the subroutine to XOR two bits based on the following methods:

a. Change each bit into a byte and then do XOR on the bytes
b.Use JB and JNB instructions

3.59 Internal memory locations 30H to 39H contain the numbers 0 to 9, respectively.
Write the assembly language instructions to reverse the order in which the numbers
are stored: 0 is put in 39H, 1 in 38H, etc.

(Hint: Use PUSH and POP instructions.)
3.60 Write the assembly language instructions to add two 16-bit numbers.

86 | CHAPTER 3

Timer Operation

4.1 INTRODUCTION

In this chapter we examine the 8051's on-chip timers. We begin with a simplified view of
timers as they are commonly used with microprocessors or microcontrollers.

A timer is a series of divide-by-2 flip-flops that receive an input signal as a clocking
source. The clock is applied to the first flip-flop, which divides the clock frequency by 2.
The output of the first flip-flop clocks the second flip-flop, which also divides by 2, and so
on. Since each successive stage divides by 2, a timer with n stages divides the input clock
frequency by 2n. The output of the last stage clocks a timer overflow flip-flop, or flag,

which is tested by software or generates an interrupt. The binary value in the timer flip-
flops can be thought of as a "count" of the number of clock pulses (or "events") since the
timer was started. A 16-bit timer, for example, would count from 0000H-to-0FFFFH. The
overflow flag is set on the 0FFFFH-to-0000H overflow of the count.

The operation of a simple timer is illustrated in Figure 4-1 for a 3-bit timer. Each
stage is shown as a type-D negative-edge-triggered flip-flop operating in divide-by-2
mode (i.e., the Q output connects to the D input). The flag flip-flop is simply a type-D
latch, set by the last stage in the timer. It is evident in the timing diagram in Figure 4-1b
that the first stage (Q0) toggles at 1/2 the clock frequency, the second stage at 1/4 the clock
frequency, and so on. The count is shown in decimal and is easily verified by examining
the state of the three flip-flops. For example, the count "4" occurs when Q2 = 1, Q1 = 0,
and Qo = 0 (410 = 1002).

Timers are used in virtually all control-oriented applications, and the 8051 timers
are no exception. There are two 16-bit timers each with four modes of operation. A third
16-bit timer with three modes of operation is added on the 8052. The timers are used for
(a) interval timing, (b) event counting, or (c) baud rate generation for the built-in serial

87

88 | CHAPTER 4

FIGURE 4-1

A 3-bit timer. (a) Schematic. (b) Timing diagram.

port. Each is a 16-bit timer; therefore, the 16
th

or last stage divides the input clock fre-

quency by 216 = 65,536.
In interval timing applications, a timer is programmed to overflow at a regular inter-

val and set the timer overflow flag. The flag is used to synchronize the program to perform
an action such as checking the state of inputs or sending data to outputs. Other applications
can use the regular clocking of the timer to measure the elapsed time between two condi-
tions (e.g., pulse width measurements).

Event counting is used to determine the number of occurrences of an event, rather
than to measure the elapsed time between events. An "event" is any external stimulus that
provides a 1-to-0 transition to a pin on the 8051 IC. The timers can also provide the baud
rate clock for the 8051's internal serial port.

The 8051 timers are accessed using six special function registers. (See Table 4-1.)
An additional five SFRs provide access to the third timer in the 8052.

TIMER OPERATION | 89

TABLE 4-1
Timer special function registers

4.2 TIMER MODE REGISTER (TMOD)

The TMOD register contains two groups of four bits that set the operating mode for Timer
0 and Timer 1. (See Table 4-2 and Table 4-3.)

TMOD is not bit-addressable, nor does it need to be. Generally, it is loaded once by
software at the beginning of a program to initialize the timer mode. Thereafter, the timer
can be stopped, started, and so on by accessing the other timer SFRs.

4.3 TIMER CONTROL REGISTER (TCON)

The TCON register contains status and control bits for Timer 0 and Timer 1 (see Table 4-
4). The upper four bits in TCON (TCON.4—TCON.7) are used to turn the timers on and
off (TR0, TR1), or to signal a timer overflow (TF0, TF1). These bits are used extensively
in the examples in this chapter.

TABLE 4-2
TMOD (timer mode) register summary

90 | CHAPTER 4

TABLE 4-3 Timer modes

M1 M0 Mode Description

0 0 0 13-bit timer mode (8048 mode)
0 1 1 16-bit timer mode
1 0 2 8-bit auto-reload mode
1 1 3 Split timer mode:

Timer 0: TL0 is an 8-bit timer controlled by timer 0
mode bits; TH0, the same except controlled by timer 1
mode bits Timer 1: stopped

The lower four bits in TCON (TCON.0—TCON.3) have nothing to do with the
timers. They are used to detect and initiate external interrupts. Discussion of these bits is
deferred until Chapter 6, when interrupts are discussed.

4.4 TIMER MODES AND THE OVERFLOW FLAG

Each timer is discussed below. Since there are two timers on the 8051, the notation "x" is
used to imply either Timer 0 or Timer 1; thus, "THx" means either TH1 or TH0,
depending on the timer.

The arrangement of timer registers TLx and THx and the timer overflow flags TFx
is shown in Figure 4-2 for each mode.

TABLE 4-4
TCON (timer control) register summary

TIMER OPERATION | 91

FIGURE 4-2

Timer modes (a) Mode 0 (b) Mode 1 (c) Mode 2 (d) Mode 3

4.4.1 13-Bit Timer Mode (Mode 0)

Mode 0 is a 13-bit timer mode that provides compatibility with the 8051's predecessor, the
8048. It is not generally used in new designs. (See Figure 4-2a.) The timer high-byte
(THx) is cascaded with the five least-significant bits of the timer low-byte (TLx) to form a
13-bit timer. The upper three bits of TLx are not used.

92 | CHAPTER 4

4.4.2 16-Bit Timer Mode (Mode 1)

Mode 1 is a 16-bit timer mode and is the same as mode 0, except the timer is operating as
a full 16-bit timer. The clock is applied to the combined high and low timer registers
(TLx/THx). As clock pulses are received, the timer counts up: 0000H, 0001H, 0002H, etc.
An overflow occurs on the 0FFFFH-to-0000H transition of the count and sets the timer
overflow flag. The timer continues to count. The overflow flag is the TFx bit in TCON
that is read or written by software. (See Figure 4-2b.)

The most-significant bit (MSB) of the value in the timer registers is THx bit 7, and
the least-significant bit (LSB) is TLx bit 0. The LSB toggles at the input clock frequency
divided by 2, while the MSB toggles at the input clock frequency divided by 65,536 (i.e.,
216.) The timer registers (TLx/THx) may be read or written at any time by software.

4.4.3 8-Bit Auto-Reload Mode (Mode 2)

Mode 2 is 8-bit auto-reload mode. The timer low-byte (TLx) operates as an 8-bit timer while
the timer high-byte (THx) holds a reload value. When the count overflows from 0FFH, not
only is the timer flag set, but the value in THx is loaded into TLx; counting continues from this
value up to the next 0FFH overflow, and so on. This mode is convenient, since timer overflows
occur at specific periodic intervals once TMOD and THx are initialized. (See Figure 4-2c.) If
TLx contains 4FH, for example, the time counts continuously from 4FH to 0FFH.

4.4.4 Split Timer Mode (Mode 3)

Mode 3 is the split timer mode and is different for each timer. Timer 0 in mode 3 is split
into two 8-bit timers. TL0 and TH0 act as separate timers with overflows setting the TF0
and TF1 bits, respectively.

Timer 1 is stopped in mode 3 but can be started by switching it into one of the other
modes. The only limitation is that the usual Timer 1 overflow flag, TF1, is not affected by
Timer 1 overflows, since it is connected to TH0.

Mode 3 essentially provides an extra 8-bit timer: The 8051 appears to have a third
timer. When Timer 0 is in mode 3, Timer 1 can be turned on and off by switching it out of
and into its own mode 3. It can still be used by the serial port as a baud rate generator, or it
can be used in any way not requiring interrupts (since it is no longer connected to TF1).

4.5 CLOCKING SOURCES

Figure 4-2 does not show how the timers are clocked. There are two possible clock sources,
selected by writing to the counter/timer (C/ T) bit in TMOD when the timer is initialized.
One clocking source is used for interval timing, the other for event counting.

4.5.1 Interval Timing

If C/ T = 0, continuous timer operation is selected and the timer is clocked from the on-
chip oscillator. A divide-by-12 stage is added to reduce the clocking frequency to a value
reasonable for most applications.

TIMER OPERATION | 93

FIGURE 4-3

Clocking source

When continuous timer operation is selected, the timer is used for interval timing.
The timer registers (TLx/THx) increment at a rate of 1/12th the frequency of the on-chip
oscillator; thus, a 12 MHz crystal would yield a clock rate of 1 MHz. Timer overflows
occur after a fixed number of clocks, depending on the initial value loaded into the timer
registers, TLx/THx.

4.5.2 Event Counting

If C/ T = 1, the timer is clocked from an external source. In most applications, this external
source supplies the timer with a pulse upon the occurrence of an "event"—the timer is
event counting. The number of events is determined in software by reading the timer reg-
isters TLx/THx, since the 16-bit value in these registers increments for each event.

The external clock source comes by way of the alternate functions of the Port 3 pins.
Port 3 bit 4 (P3.4) serves as the external clocking input for Timer 0 and is known as "T0"
in this context. P3.5, or "Tl" is the clocking input for Timer 1. (See Figure 4-3.)

In counter applications, the timer registers are incremented in response to a 1-to-0
transition at the external input, Tx. The external input is sampled during S5P2 of every
machine cycle; thus, when the input shows a high in one cycle and a low in the next, the
count is incremented. The new value appears in the timer registers during S3P1 of the
cycle following the one in which the transition is detected. Since it takes two machine
cycles (2 µs) to recognize a 1-to-0 transition, the maximum external frequency is 500 kHz
(assuming 12 MHz operation).

4.6 STARTING, STOPPING, AND CONTROLLING THE TIMERS

Figure 4-2 illustrates the various configurations for the timer registers, TLx and THx, and
the timer overflow flags, TFx. The two possibilities for clocking the timers are shown in
Figure 4-3. We now demonstrate how to start, stop, and control the timers.

The simplest method for starting and stopping the timers is with the run-control bit,
TRx, in TCON. TRx is clear after a system reset; thus, the timers are disabled (stopped) by
default. TRx is set by software to start the timers. (See Figure 4-4.)

94 | CHAPTER 4

FIGURE 4-5

Timer 1 oper
Since TRx is in the bit-addressable register TCON, it is easy to start and stop the
timers within a program. For example, Timer 0 is started by

SETB TR0

and stopped by

CLR TR0

The assembler will perform the necessary symbolic conversion from "TR0" to the correct
bit address. SETB TR0 is exactly the same as SETB 8CH.

Another method for controlling the timers is with the GATE bit in TMOD and the
external input INTx. Setting GATE = 1 allows the timer to be controlled by INTx. This is
useful for pulse width measurements as follows. Assume INT0 is low but pulses high for a
period of time to be measured. Initialize Timer 0 for mode 1, 16-bit timer mode, with

ating in mode 1

FIGURE 4-4

Starting and stopping the

timers

TIMER OPERATION | 95

TL0/TH0 = 0000H, GATE = 1, and TR0 = 1. When INT0 goes high, the timer is "gated

on" and is clocked at a rate of 1 MHz. When INT0 goes low, the timer is "gated off' and

the duration of the pulse in microseconds is the count in TL0/TH0. (INT0 can be pro-
grammed to generate an interrupt when it returns low.)

To complete the picture, Figure 4-5 illustrates Timer 1 operating in mode 1 as a 16-
bit timer. As well as the timer registers TL1/TH1 and the overflow flag TF1, the diagram
shows the possibilities for the clocking source and for starting, stopping, and controlling
the timer.

EXAMPLE Figure 4-5 illustrates Timer 1 operating in mode 1. Study the figure and identify the 8051's
4.1 timer registers and control bits shown. Tabulate the bit and byte addresses for each. For the

control bits, identify the special function registers that hold them.

Solution

Timer registers:

TH1 at byte address 8DH

TL1 at byte address 8BH

Timer control/mode bits:

TR1 at bit address 8EH (within TCON)

TF1 at bit address 8FH (within TCON)

C/ T at bit 6 in TMOD (address 88H)

GATE at bit 7 TMOD (address 88H)

Discussion

Of the four timer control/mode bits shown, only TRL and TF1 are bit-addressable. These
bits are usually set and cleared on-the-fly to start and stop the timer or to check its status
as appropriate. The C/ T and GATE bits are generally written only once, at the beginning
of a program to set the timer's mode of operation.

4.7 INITIALIZING AND ACCESSING TIMER REGISTERS

The timers are usually initialized once at the beginning of a program to set the correct operat-
ing mode. Thereafter, within the body of a program, the timers are started, stopped, flag bits
tested and cleared, timer registers read or updated, and so on, as required in the application.

TMOD is the first register initialized, since it sets the mode of operation. For exam-
ple, the following instruction initializes Timer 1 as a 16-bit timer (mode 1) clocked by the
on-chip oscillator (interval timing):

MOV TMOD,#00010000B

The effect of this instruction is to set M1 = 0 and M0 = 1 for mode 1, leave C/ T = 0 and
GATE = 0 for internal clocking, and clear the Timer 0 mode bits. (See Table 4-2.) Of
course, the timer does not actually begin timing until its run control bit, TR1, is set.

96 | CHAPTER 4

If an initial count is necessary, the timer registers TL1/TH1 must also be initialized.
Remembering that the timers count up and set the overflow flag on an 0FFFFH-to-0000H
transition, a 100 µs interval could be timed by initializing TL1/TH1 to 100 counts less than
0000H. The correct value is -100 or 0FF9CH. The following instructions do the job:

MOV TL1,#9CH
MOV TH1,#0FFH

The timer is then started by setting the run control bit as follows:

SETB TR1

The overflow flag is automatically set 100 µs later. Software can sit in a "wait loop" for
100 µs using a conditional branch instruction that returns to itself as long as the overflow
flag is not set:

WAIT: JNB TF1,WAIT

When the timer overflows, it is necessary to stop the timer and clear the overflow flag in

software:

CLR TR1
CLR TF1

4.7.1 Reading a Timer "on the Fly"

In some applications, it is necessary to read the value in the timer registers "on the fly."
There is a potential problem that is simple to guard against in software. Since two timer reg-
isters must be read, a "phase error" may occur if the low-byte overflows into the high-byte
between the two read operations. A value may be read that never existed. The solution is to
read the high-byte first, then the low-byte, and then read the high-byte again. If the high-
byte has changed, repeat the read operations. The instructions below read the contents of the
timer registers TL1/TH1 into registers R6/R7, correctly dealing with this problem.

AGAIN: MOV A,THH
MOV R6,TL1

CJNE A,THH,AGAIN
MOV R7,A

4.8 SHORT, MEDIUM, AND LONG INTERVALS

What is the range of intervals that can be timed? This issue is examined assuming the 8051
is operating from a 12 MHz crystal. The on-chip oscillator is divided by 12 and clocks the
timers at a rate of 1 MHz.

The shortest possible interval is limited, not by the timer clock frequency, but by
software. Presumably, something must occur at regular intervals, and it is the duration of
instructions that limit this for very short intervals. The shortest instruction on the 8051 is
one machine cycle or one microsecond. Table 4-5 summarizes the techniques for creating
intervals of various lengths. (Operation from a 12 MHz crystal is assumed.)

TIMER OPERATION | 97

TABLE 4-5

Techniques for programming timed intervals (12 MHz operation)

EXAMPLE Pulse Wave Generation

4.2 Write a program that creates a periodic waveform on P1.0 with as high a frequency as
possible. What are the frequency and duty cycle of the waveform?

Solution

Discussion

This program creates a pulse waveform on P1.0 with a period of 4 µs. and a frequency of
250 kHz. In each cycle, the signal is high for 1 µs. and low for 3 µs. This corresponds to a
duty cycle of 1/4 = 0.25 or 25% (see Figure 4-6).

It might appear at first that the instructions in Figure 4-6 are misplaced, but they are
not. The SETB P1.0 instruction, for example, does not actually set the port bit until the end
of the instruction, during S6P2.

The period of the waveform can be lengthened by inserting NOP instructions into the
loop. Each NOP adds 1 machine cycle or 1 µs to the period of the waveform. For example,
adding two NOP instructions after the SETB P1.0 instruction would make the output a square
wave (duty cycle = 50%) with a period of 6 µs and a frequency of 166.7 kHz. Beyond a point,
software tuning is cumbersome, and a timer is the best choice to create time delays.

FIGURE 4-6

Waveform for example

98 | CHAPTER 4

EXAMPLE Square Wave Generation
4.3 Write a program that creates a square wave on P1.0 with as high a frequency as possible.

What are the frequency and duty cycle of the waveform?

Solution

Discussion

The period is 6 µs : high-time = low-time = 3 µs. The frequency is 166.67 kHz and the duty
cycle is 50% so this is a square wave, in contrast to the previous example which was not a
square wave.

Moderate-length intervals are easily obtained using 8-bit auto-reload mode, mode 2.
Since the timed interval is set by an 8-bit count, the longest possible interval before overflow
is 28 = 256 µs.

EXAMPLE 10 kHz Square Wave
4.4 Write a program using Timer 0 to create a 10 kHz square wave on P1.0.

Solution

Discussion
The program above creates a square wave on P1.0 with a high-time of 50 µs and a low-time of
50 µs. Since the interval is less than 256 µs, timer mode 2 can be used. An overflow every 50
µs requires a TH0 reload value of 50 counts less than 00H, or -50.

The program uses a complement bit instruction (CPL, line 12) rather than SETB and
CLR. Between each complement operation, a delay of 1/2 the desired period (50 µs) is
programmed using Timer 0 in 8-bit auto-reload mode. The reload value is specified using
decimal notation as -50 (line 8), rather than using hexadecimal notation. The assembler
performs the necessary conversion. Note that the timer overflow flag (TF0) is explicitly
cleared in software after each overflow (line 11).

Timed intervals longer than 256 µs must use 16-bit timer mode, mode 1. The longest
delay is 216 = 65,536 µs or about 0.066 seconds. The inconvenience of mode 1 is that the

TIMER OPERATION | 99

timer registers must be reinitialized after each overflow, whereas reloading is automatic in

mode 2.

EXAMPLE 1 kHz Square Wave
4.5 Write a program using Timer 0 to create a 1kHz square wave on P1.0.

Solution

Discussion
A 1 kHz square wave requires a high-time of 500 µs and a low-time of 500 µs. Since the
interval is longer than 256 µs, mode 2 cannot be used. Full 16-bit timer mode, mode 1, is
required. The main difference in the software is that the timer registers, TL0 and TH0, are
reinitialized after each overflow (lines 8 and 9).

There is a slight discrepancy in the output frequency in the program above. This
results from the extra instructions inserted after the timer overflow to reinitialize the timer.
If exactly 1 kHz is required, the reload value for TL0/TH0 must be adjusted somewhat.
Such errors do not occur in auto-reload mode, since the timer is never stoppe - it overflows
at a consistent rate set by the reload value in TH0.

Since there are two timers in the 8051, a program could make use of them to simul-
taneously generate two different waveforms on separate port pins.

EXAMPLE Using Two Timers Simultaneously
4.6 Write a program that creates a square wave on P1.0 with a frequency of 10kHz and a square

wave on P2.0 with a frequency of 1kHz.

Solution

100 | CHAPTER 4

Discussion
Both timers 0 and 1 are used in this case to simultaneously generate two square waves on
P1.0 and P2.0, respectively. The value written into TMOD initializes both timers at the
same time. Even though the timers are running simultaneously, the testing for overflow has
to be done in sequence. Timer 0 is checked first since its period is smaller in order to avoid
missing its overflows. Notice that Timer 0 is set to operate in mode 2 auto-reload mode so
there is no need to reload the count after every overflow. Meanwhile, Timer 1 operates in
mode 1 so its count must be reloaded every time an overflow occurs.

Intervals longer than 0.066 seconds can be achieved by cascading Timer 0 and
Timer 1 through software, but this ties up both timers. A more practical approach uses one
of the timers in 16-bit mode with a software loop counting overflows. The desired
operation is performed every n overflows.

EXAMPLE Buzzer Interface

4.7 A buzzer is connected to P1.7, and a debounced switch is connected to P1.6 (see Figure 4-7).
Write a program that reads the logic level provided by the switch and sounds the buzzer for 1
second for each 1-to-0 transition detected.

Solution

TIMER OPERATION | 101

Discussion
The buzzer in Figure 4-7 is a piezo ceramic transducer that vibrates when stimulated with a
DC voltage. A typical example is the Projects Unlimited AI-430 that generates a tone of
about 3 kHz at 5 volts DC. An inverter is used as a driver since the AI-430 draws 7 mA of
current. As indicated in the 8051's DC Characteristics in Appendix E, Port 1pins can sink a
maximum of 1.6 mA. The AI-430 costs a few dollars.

The main loop in the software consists of six instructions (lines 10-15). In line 10, a
one-instruction loop is executed to wait for the input signal on P1.7 to go high. Then an-
other one-instruction loop (line 11) executes to wait for the input signal to go low. When
this happens, the buzzer sounds for 1 second. This is implemented in the next three in-
structions. First, P1.7 is set to sound the buzzer (line 12); second, a 1-second delay sub-
routine is called (line 13), and, third, P1.7 is cleared to silence the buzzer (line 14). Then
the main loop is executed again (line 15).

The delay subroutine (lines 17-25) uses the technique identified in Table 4-6 as "16-
bit timer plus software loops." In theory, delays of any length can be created. In this
example, a 1-second delay is created by using a count of —10,000 for TH0/TL0 with 16-
bit timer mode. The effect is to create a 10,000 µs delay. This delay (lines 18-23) is
enclosed within a loop that executes 100 times, using R7 as a counter. The effect is a 1-
second delay.

FIGURE 4-7 Buzzer example

102 | CHAPTER 4

FIGURE 4-8

Timer 2 in 16-bit auto-reload mode

There are two situations not handled in the preceding example. First, if the input tog-
gles during the 1 second that the buzzer is sounding, the transition is not detected, since the
software is busy in the delay routine. Second, if the input toggles very quickly-in less than
a microsecond-the transition may be missed altogether by the JNB and JB instructions.
Problem 5 at the end of this chapter deals with the first situation. The second can only be
handled using an interrupt input to "latch" a status flag when a 1-to-0 transition occurs.
This is discussed in Chapter 6.

4.9 PRODUCING EXACT FREQUENCIES

As was discussed in the previous section, the output frequencies of the square waves gen-
erated so far have slight errors. The errors are due to the rounding off, and overhead caused
by the time it takes to execute the instructions themselves.

4.9.1 Eliminating Round-off Errors

Round-off errors occur when the desired period of a certain periodic waveform is not an
integer, so it is rounded off to an integer in order that it can be represented in the 8051.

EXAMPLE Round-off Errors
4.8 Suppose a square wave of 3kHz is to be generated. What should the reload value of the

timer be? Calculate the round-off error if any, and hence determine what crystal frequency
would produce no round-off error.

TIMER OPERATION | 103

Solution

A frequency of 3 kHz means the period should be 333.33 µs, so the high-time = low-time
= 166.67 s. Since the 8051 can only handle integer count values, the timer reload value
should be 167 counts before overflow, or —167. Notice that we have rounded off the
desired count to an integer value. The actual period is hence 167 x 2 x 1s = 334 µs so the
actual frequency is 2.994 kHz. The round-off error is:

Discussion

Our previous examples used a crystal frequency of 12 MHz but that causes round-off
errors. Assuming that a count of 167 is used, our goal is to calculate the crystal frequency
so that an exact square wave with a frequency of 3 kHz is obtained.

Desired period = 333.33 µs so

4.9.2 Compensating for Overhead Due to Instructions

Instructions take some time to be carried out. The simplest of instructions require one
machine cycle while the most complex ones require 4. Therefore, instructions also add to
the time delay and if we prefer exact frequencies, we would need to adjust our initial timer
counts to compensate for the overhead caused by the execution of these instructions.
Example 4.9 considers a very simple demonstration of this.

EXAMPLE Rewrite the program of Example 4.5 to compensate for the overhead delay due to instructions
4.9 in the program.

Solution

8H00 H ORG 8H00H
8H00 75890H 2 MOV TMOD, #0HH ;H6-bit timer mode

8103 758CFE 3 LOOP: MOV TH0, #0FEH ;-490 (high byte)

104 | CHAPTER 4

Discussion

The program is exactly the same as that in Example 4.5. Only the reload value is different.
In this case, a value of -490 was chosen to compensate for the overhead due to instruc-
tions. Let's analyze to see why we chose this value.

TABLE 4-6

T2CON (Timer 2 control) register summary

TIMER OPERATION | 105

We concentrate on the software loop, which consists of the two MOV instructions,
followed by SETB, JNB, two CLRs, CPL and SJMP. The MOV, JNB, and SJMP instruc-
tions require 2 machine cycles each, while SETB, CLR and CPL each require 1.

The initial value for P1.0 can be HIGH or LOW. Let's assume that P1.0 is initially
LOW. The first two MOV instructions require 2 machine cycles each, while SETB requires
1. The next instruction is JNB which determines the length and duration of the loop, and
will be executed repeatedly until the timer 0 overflows. Each execution of JNB requires 2
machine cycles.

When timer 0 overflows, this is the moment in which P1.0 should be complemented
to the opposite state immediately. However, in the above program, P1.0 would only be
complemented after full execution of the CPL instruction, which is 3 machine cycles later.
This extra delay is the overhead due to instructions. Figure 4-8 illustrates this in more de-
tail, where the states of P1.0 and TR0 are indicated. Also notice that the actual high- or
low-time of the square wave on P1.0 is between two subsequent CPL instructions. Figure
4-8 shows that this duration is one full timer cycle of 490 µs plus the overhead due to ex-
ecuting the CLR and CPL instructions after the overflow (3 µs), and the execution of the
SJMP, MOV and SETB instructions (7 µs.) before the timer is restarted for the next cycle.

Therefore, taking all this into consideration, the actual high- or low-time time is 500
µs., exactly resulting in the desired frequency of 1 kHz for the square wave.

4.10 8052 TIMER 2

The third timer added on the 8052 IC is a powerful addition to the two just discussed. As
shown earlier in Table 4-1, five extra special-function registers are added to accommodate
Timer 2. These include the timer registers, TL2 and TH2, the timer control register,
T2CON, and the capture registers, RCAP2L and RCAP2H.

The mode for Timer 2 is set by its control register, T2CON. (See Table 4-6.) Like
Timers 0 and 1, Timer 2 can operate as an interval timer or event counter. The clocking
source is provided internally by the on-chip oscillator, or externally by T2, the alternate

function of Port 1 bit 0 (P1.0) on the 8052 IC. The C/ T2 bit in T2CON selects between the

internal and external clock, just as the C/ T bits do in TCON for Timers 0 and 1.
Regardless of the clocking source, there are three modes of operation: auto-reload, capture,
and baud rate generator.

4.10.1 Auto-Reload Mode

The capture/reload bit in T2CON selects between the first two modes. When CP/ RL2 = 0,
Timer 2 is in auto-reload mode with TL2/TH2 as the timer registers, and RCAP2L and
RCAP2H holding the reload value. Unlike the reload mode for Timers 0 and 1, Timer 2 is
always a full 16-bit timer, even in auto-reload mode.

Reload occurs on an 0FFFFH-to-0000H transition in TL2/TH2 and sets the Timer 2
flag, TF2. This condition is determined by software or is programmed to generate an inter-
rupt. Either way, TF2 must be cleared by software before it is set again.

106 | CHAPTER 4

FIGURE 4-9

Timer 2 in 16-bit capture mode

Optionally, by setting EXEN2 in T2CON, a reload also occurs on the 1-to-0 transi-
tion of the signal applied to pin T2EX, which is the alternate pin function for P1.1 on the
8052 IC. A 1-to-0 transition on T2EX also sets a new flag bit in Timer 2, EXF2. As with
TF2, EXF2 is tested by software or generates an interrupt. EXF2 must be cleared by soft-
ware. Timer 2 in auto-reload mode is shown in Figure 4-8.

4.10.2 Capture Mode

When CP/ RL2 = 1, capture mode is selected. Timer 2 operates as a 16-bit timer and sets
the TF2 bit upon an 0FFFFH-to-0000H transition of the value in TL2/TH2. The state of
TF2 is tested by software or generates an interrupt.

To enable the capture feature, the EXEN2 bit in T2CON must be set. If EXEN2 = 1,
a 1-to-0 transition on T2EX (P1.1) "captures" the value in timer registers TL2/TH2 by
clocking it into registers RCAP2L and RCAP2H. The EXF2 flag in T2CON is also set
and, as stated above, is tested by software or generates an interrupt. Timer 2 in capture
mode is shown in Figure 4-9.

4.11 BAUD RATE GENERATION

Another use of the timers is to provide the baud rate clock for the on-chip serial port. This
comes by way of Timer 1 on the 8051 IC or Timer 1 and/or Timer 2 on the 8052 IC. Baud
rate generation is discussed in Chapter 5.

TIMER OPERATION | 107

SUMMARY

This chapter has introduced the 8051 and 8052 timers. The software solutions for the
examples presented here feature one common but rather limiting trait. They consume all
of the CPU's execution time. The programs execute in wait loops, waiting for a timer
overflow. This is fine for learning purposes, but for practical control-oriented applications
using microcontrollers, the CPU must perform other duties and respond to external events,
such as an operator entering a parameter from a keyboard. In the chapter on interrupts, we
shall demonstrate how to use the timers in an "interrupt-driven" environment. The timer
overflow flags are not tested in a software loop but generate an interrupt. Another program
temporarily interrupts the main program while an action is performed that affects the timer
interrupt (perhaps toggling a port bit). Through interrupts, the illusion of doing several
things simultaneously is created.

PROBLEMS

4.1 Write an 8051 program that creates a square wave on P1.5 with a frequency of 100
kHz. (Hint: Don't use the timers.)

4.2 What is the effect of the following instruction?

SETB 8EH

4.3 What is the effect of the following instruction?

MOV TMOD,#11010101B

4.4 Consider the three-instruction program shown in Example 4.2. What are the fre-
quency and duty cycle of the waveform created on P1.0 for a 16 MHz 8051?

4.5 Rewrite the solution to Example 4.7 to include a "restart" mode. If a 1-to-0 transi-
tion occurs while the buzzer is sounding, restart the timing loop to continue the buzz
for another second. This is illustrated in Figure 4-10.

4.6 Write an 8051 program to generate a 12 kHz square wave on P1.2 using Timer 0.
4.7 Design a "turnstile" application using Timer 1 to determine when the 10,000th per-

son has entered a fairground. Assume (a) a turnstile sensor connects to TI and gen-
erates a pulse each time the turnstile is rotated, and (b) a light is connected to P1.7
that is on when P1.7 = 1, and off otherwise. Count "events" at T1 and turn on the
light at P1.7 when the 10,000th person enters the fairground. (See Figure 4-11.)

FIGURE 4-10
Timing for modified

buzzer example

108 | CHAPTER

4

4

4

4

4

4

4

4

4

.8 The international tuning standard for musical instruments is "A above middle C" at
a frequency of 440 Hz. Write an 8051 program to generate this tuning frequency and
sound a 440 Hz tone on a loudspeaker connected to P1.1. (See Figure 4-12.) Due to
rounding of the values placed in TL1/TH1, there is a slight error in the output fre-
quency. What is the exact output frequency, and what is the percentage error? What
value of crystal would yield exactly 440 Hz with the program you have written?

.9 Write an 8051 program to generate a 500 Hz signal on P1.0, using Timer 0. The
wave form should have a 30% duty cycle (duty cycle = high-time / period).

.10 The circuit shown in Figure 4-13 will provide an extremely accurate 60 Hz signal to
T2 by tapping the secondary of a power supply transformer. Initialize Timer 2 such
that it is clocked by T2 and overflows once per second. Upon each overflow, update
a time-of-day value stored in the 8052's internal memory at locations 50H (hours),
51H (minutes), and 52H (seconds). More timer examples and problems are found in
Chapter 6.

.11 a. Write the program to generate a (30% duty cycle) rectangular pulse wave on
P1.0, and a square wave on P2.0.

b. Hence, determine the (i) round-off error, and (ii) error due to instruction
overhead for both waveforms.

.12 Write a program to generate a 2.5 kHz waveform on P1.0 with a 20% duty cycle.
Show your workings and write comments for each line of the code.

.13 Consider an external crystal oscillator with a frequency of 16 MHz instead of the stan-
dard 12MHz. Write a program to generate a periodic waveform on P1.0 with the highest
possible frequency. Hence, calculate the frequency and duty cycle of that waveform.

.14 Suppose you want to use the 8051's timer to time the duration of 1 hour. What
mode should you ask the timer to be in? Why?
4.15 Suppose you are required to generate a square waveform on P1.0 with a
frequency of 21 kHz having a duty cycle of 10%, what mode should you use the timer
in? Why?

.16 What is the highest value that an 8051 timer can count to? If you use an 8051's timer
as an event counter, what effect will it have on your counting? Why?

FIGURE 4-11
Turnstile problem

FIGURE 4-12
Loudspeaker interface

TIMER OPERATION | 109

FIGURE 4-13

60 Hz time base

4.17 What do you mean by a 16-bit timer? Explain.
4.18 a. Write a program to generate a 3 kHz waveform on P2.0 with a 30% duty cycle.

Show your workings and write comments for each line of the code. Make
adjustments to overcome the delay overhead due to instructions.

b. For the program above, is there any truncation error? If so, calculate the
percentage error. If not, why do you say so?

110 | CHAPTER 4

Serial Port Operation

5.1 INTRODUCTION

The 8051 includes an on-chip serial port that can operate in several modes over a wide
range of frequencies. The essential function of the serial port is to perform parallel-to-
serial conversion for output data, and serial-to-parallel conversion for input data.

Hardware access to the serial port is through the TXD and RXD pins introduced in
Chapter 2. These pins are the alternate functions for two Port 3 bits, P3.1 on pin 11
(TXD), and P3.0 on pin 10 (RXD).

The serial port features full duplex operation (simultaneous transmission and recep-
tion) and receive buffering, allowing one character to be received and held in a buffer
while a second character is received. If the CPU reads the first character before the second
is fully received, data are not lost.

The serial port frequency of operation, or baud rate, can be fixed (derived from the
8051 on-chip oscillator) or variable. If a variable baud rate is used, Timer 1 supplies the
baud rate clock and must be programmed accordingly. (On the 8032/8052, Timer 2 can be
programmed to supply the baud rate clock.)

Two special function registers, the serial port buffer register (SBUF) and the serial
port control register (SCON), provide software access to the serial port.

5.2 SERIAL COMMUNICATION

Before we move on to discuss the operation of the 8051 serial port, we first touch on some
basic concepts of serial communication. Serial communication involves the transmission of
bits of data through only one communication line. The data are transmitted bit by bit in either
synchronous or asynchronous format. Synchronous serial communication transmits one
whole block of characters in synchronization with a reference clock while asynchronous

111

112 | CHAPTER 5

serial communication randomly transmits one character at any time, independent of any
clock. As an example, the transmission of each key press from the keyboard to the computer
is asynchronous communication since the rate at which the key presses are entered is not
fixed and may occur at any instant. Meanwhile, if two computers were to communicate
synchronously, both of them would be synchronized to the same reference clock throughout
the duration of the transmission.

5.3 SERIAL PORT BUFFER REGISTER (SBUF)

The serial port buffer register (SBUF) at address 99H is really two buffers. Writing to SBUF
loads data to be transmitted, and reading SBUF accesses received data. These are two separate
and distinct registers, the transmit write-only register, and the receive read-only register. (See
Figure 5-1.)

Notice in Figure 5-1 that a serial-to-parallel shift register is used to clock in the
received data before it is transferred to the receive read-only register. This shift register is
the key element in providing receive buffering. Only when all 8 bits of the incoming data
are received will they be transferred to the receive read-only register. This ensures that
while the incoming data are being received, the previous received data are still intact in the
receive read-only register.

FIGURE 5-1

Serial port block diagram

SERIAL PORT OPERATION | 113

5.4 SERIAL PORT CONTROL REGISTER (SCON)

The serial port control register (SCON) at address 98H is a bit-addressable register contain-
ing status bits and control bits. Status bits indicate the end of a character transmission or
reception and are tested in software or programmed to cause an interrupt. Meanwhile, writ-
ing to the control bits would set the operating mode for the 8051 serial port. (See Table 5-1
and Table 5-2.)

Before using the serial port, SCON is initialized for the correct mode, and so on.
For example, the following instruction

MOV SCON,#01010010B

initializes the serial port for mode 1 (SM0/SM1 = 0/1), enables the receiver (REN = 1), and
sets the transmit interrupt flag (T1 = 1) to indicate the transmitter is ready for operation.

5.5 MODES OF OPERATION

The 8051 serial port has four modes of operation, selectable by writing 1s or 0s into the
SM0 and SM1 bits in SCON. Three of the modes enable asynchronous communications,
with each character received or transmitted framed by a start bit and a stop bit. Readers fa-
miliar with the operation of a typical RS232C serial port on a microcomputer will find
these modes familiar territory. In the fourth mode, the serial port operates as a simple shift
register. Each mode is summarized below.

5.5.1 8-Bit Shift Register (Mode 0)

Mode 0, selected by writing 0s into bits SM1 and SM0 of SCON, puts the serial port into
8-bit shift register mode. Serial data enter and exit through RXD, and TXD outputs the
shift clock. Eight bits are transmitted or received with the least-significant (LSB) first.

TABLE 5-1
SCON (serial port control) register summary

114 | CHAPTER 5

TABLE 5-2
Serial Dort modes

The baud rate is fixed at 1/12th the on-chip oscillator frequency. The terms "RXD"
and "TXD" are misleading in this mode. The RXD line is used for both data input and out-
put, and the TXD line serves as the clock.

Transmission is initiated by any instruction that writes data to SBUF. Data are shifted out
on the RXD line (P3.0) with clock pulses sent out the TXD line (P3.1). Each transmitted bit is
valid on the RXD pin for one machine cycle. During each machine cycle, the clock signal goes
low on S3P1 and returns high on S6P1. The timing for output data is shown in Figure 5-2.

Reception is initiated when the receiver enable bit (REN) is 1 and the receive interrupt
bit (RI) is 0. The general rule is to set REN at the beginning of a program to initialize the
serial port and then clear RI to begin a data input operation. When RI is cleared, clock
pulses are written out the TXD line, beginning the following machine cycle, and data are
clocked in the RXD line. Obviously, it is up to the attached circuitry to provide data on the

FIGURE 5-2
Serial port transmit timing for mode 0

SERIAL PORT OPERATION | 115

FIGURE 5-3

Serial port receive timing for mode 0

RXD line as synchronized by the clock signal on TXD. The clocking of data into the serial
port occurs on the positive edge of TXD. (See Figure 5-3.) Notice that in this mode of
operation, the data transfers between the 8051 serial port and the attached circuitry are via
synchronous communication where both parties are synchronized to the clock signal on
TXD. As will be uncovered in the later sections, the other operating modes of the serial
port operate via asynchronous communication.

One possible application of shift register mode is to expand the output capability of
the 8051. A serial-to-parallel shift register IC can be connected to the 8051 TXD and
RXD lines to provide an extra eight output lines. (See Figure 5-4.) Additional shift
registers may be cascaded to the first for further expansion.

5.5.2 8-Bit UART with Variable Baud Rate (Mode 1)

In mode 1 the 8051 serial port operates as an 8-bit UART with variable baud rate. A
UART, or "universal asynchronous receiver/transmitter," is a device that receives and
transmits serial data with each data character preceded by a start bit (low) and followed by
a stop bit (high). A parity bit is sometimes inserted between the last data bit and the stop
bit. The essential operation of a UART is parallel-to-serial conversion of output data and
serial-toparallel conversion of input data.

In mode 1, 10 bits are transmitted on TXD or received on RXD. These consist of a
start bit (always 0), eight data bits (LSB first), and a stop bit (always 1). For a receive
operation, the stop bit goes into RB8 in SCON. In the 8051, the baud rate is set by the
Timer 1 overflow rate; the 8052 baud rate is set by the overflow rate of Timer 1 or Timer
2 or a combination of the two (one for transmit, the other for receive).

FIGURE 5-4

Serial port shift

register mode

116| CHAPTER 5

FIGURE 5-6

Setting the seri
Clocking and synchronizing the serial port shift registers in modes 1, 2, and 3 is
established by a 4-bit divide-by-16 counter, the output of which is the baud rate clock. (See
Figure 5-5.) The input to this counter is selected through software, as discussed later.

Transmission is initiated by writing to SBUF but does not actually start until the next
rollover of the divide-by-16 counter supplying the serial port baud rate. Shifted data are out-
putted on the TXD line beginning with the start bit, followed by the eight data bits, then the stop
bit. The period for each bit is the reciprocal of the baud rate as programmed in the timer. The
transmit interrupt flag (TI) is set as soon as the stop bit appears on TXD. (See Figure 5-6.)

Reception is initiated by a 1-to-0 transition on RXD. The divide-by-16 counter is
immediately reset to align the counts with the incoming bit stream (the next bit arrives on
the next divide-by-16 rollover, and so on). The incoming bit stream is sampled in the
middle of the 16 counts.

The receiver includes "false start bit detection" by requiring a 0 state eight counts
after the first 1-to-0 transition. If this does not occur, it is assumed that the receiver was
triggered by noise rather than by a valid character. The receiver is reset and returns to the
idle state, looking for the next 1-to-0 transition.

Assuming a valid start bit was detected, character reception continues. The start bit
skipped and eight data bits are clocked into the serial port shift register. When all eight bits
have been clocked in, the following occur:

1. The ninth bit (the stop bit) is clocked into RB8 in SCON,
2. SBUF is loaded with the eight data bits, and
3. The receiver interrupt flag (RI) is set.

al port T1 flag

FIGURE 5-5

Serial port clocking

SERIAL PORT OPERATION | 117

These only occur, however, if the following conditions exist:

1. RI = 0, and
2. SM2 = 1 and the received stop bit = 1, or SM2 = 0.

The requirement that RI = 0 ensures that software has read the previous character
(and cleared RI). The second condition sounds complicated but applies only in multi-
processor communications mode (see below). It implies, "Do not set RI in multiprocessor
communications mode when the ninth data bit is 0."

5.5.3 9-Bit UART with Fixed Baud Rate (Mode 2)

When SM1 = 1 and SM0 = 0, the serial port operates in mode 2 as a 9-bit UART with a
fixed baud rate. Eleven bits are transmitted or received: a start bit, eight data bits, a pro-
grammable ninth data bit, and a stop bit. On transmission, the ninth bit is whatever has
been put in TB8 in SCON (perhaps a parity bit). On reception, the ninth bit received is
placed in RB8. The baud rate in mode 2 is either 1/32nd or 1/64th the on-chip oscillator
frequency. (See 5.9 Serial Port Baud Rates.)

5.5.4 9-Bit UART with Variable Baud Rate (Mode 3)

Mode 3, 9-bit UART with variable baud rate, is the same as mode 2 except the baud rate
is programmable and provided by the timer. In fact, modes 1, 2, and 3 are very similar.
The differences lie in the baud rates (fixed in mode 2, variable in modes 1 and 3) and in
the number of data bits (eight in mode 1, nine in modes 2 and 3).

5.6 FULL DUPLEX SERIAL COMMUNICATION: ISSUES

The 8051's serial port allows for full duplex operation, which means that both transmission and
reception of characters can be done simultaneously. However, there are some issues involved.

The first issue involves the physical connections. Full duplex communication must
use two separate lines, one for transmission and one for reception, otherwise the signals
from both parties would collide. In mode 0 of the serial port operation, only one line, the
RXD, is used for both transmission and reception, hence full duplex cannot be achieved in
this mode. In fact, as has been previously discussed in the section on the serial port modes
of operation, mode 0 provides only half duplex operation. Meanwhile, all the other three
modes use two separate lines, TXD and RXD for transmission and reception respectively,
hence they allow for full duplex operation.

Secondly, the timing and synchronization must be considered. A common question
asked by the student when told that the serial port can operate in full duplex is: "Suppose the
serial port is transmitting a character to a serial device, so both the 8051 and the serial device
are in synchronization. What would happen when in the midst of this, an incoming
character is detected on the RXD line?" This poses an interesting question. For an answer
to this, there is a need to understand the internal structure of the serial port. The 8051 serial
port consists of two physically separate SBUF registers as shown in Figure 5-1. The transmit

118 | CHAPTER 5

write-only register is clocked by a transmit baud rate clock while the receive read-only re-
gister is clocked by a receive baud rate clock. Both clocks are based on the overflow rate of
Timer 1, as has been previously discussed (See Section 5.5.2 Mode 1.) Despite this fact,
however, both baud rate clocks are separate and independent.

Transmission is initiated by writing to SBUF but only starts when the next rollover
of the transmit baud rate clock is detected. Meanwhile, if any incoming character is de-
tected, the 1-to-0 transition that denotes the start bit will immediately reset the receive baud
rate clock so that the 8051 is synchronized with the device attached to the serial port.

Towards the end of this chapter, an example that demonstrates the full duplex opera-
tion of the serial port will be given.

5.7 INITIALIZATION AND ACCESSING SERIAL PORT REGISTERS

5.7.1 Receiver Enable

The receiver enable bit (REN) in SCON must be set by software to enable the reception of
characters. This is usually done at the beginning of a program when the serial port, timers,
etc., are initialized. This can be done in two ways. The instruction

SETB REN

explicitly sets REN, or the instruction

MOV SCON,#xxx1xxxxB

sets REN and sets or clears the other bits in SCON, as required. (The x's must be 1s or 0s
to set the mode of operation.)

5.7.2 The Ninth Data Bit

The ninth data bit transmitted in modes 2 and 3 must be loaded into TB8 by software. The ninth
data bit received is placed in RB8. Software may or may not require a ninth data bit, depending
on the specifications of the serial device with which communications are established. (The ninth
data bit also plays an important role in multiprocessor communications. See below.)

5.7.3 Adding a Parity Bit

A common use for the ninth data bit is to add parity to a character. As discussed in Chapter
2, the P bit in the program status word (PSW) is set or cleared every machine cycle to es-
tablish even parity with the eight bits in the accumulator. If, for example, communications
require eight data bits plus even parity, the following instructions could be used to transmit
the eight bits in the accumulator with even parity added in the ninth bit:

MOV C,P ; PUT EVEN PARITY BIT IN TBS
MOV TBS,C ; THIS BECOMES THE 9TH DATA BIT
MOV SBUF,A ; MOVE S BITS FROM ACC TO SBUF

SERIAL PORT OPERATION | 119

If odd parity is required, then the instructions must be modified as follows:

MOV C,P ; PUT EVEN PARITY BIT IN C FLAG
CPL C ; CONVERT TO ODD PARITY

MOV TB8,C
MOV SBUF,A

Of course, the use of parity is not limited to modes 2 and 3. In mode 1, the eight
data bits transmitted can consist of seven data bits plus a parity bit. In order to transmit a
7-bit ASCII code with even parity in bit 8, the following instructions could be used:

CLR ACC.7 ; ENSURE MSB IS CLEAR

; EVEN PARITY IS IN P

MOV C,P ; COPY TO C

MOV ACC.7,C ; PUT EVEN PARITY INTO MSB

MOV SBUF,A ; SEND CHARACTER

; 7 DATA BITS PLUS EVEN PARITY

5.7.4 Interrupt Flags

The receive and transmit interrupt flags (RI and TI) in SCON play an important role in 8051
serial communications. Both bits are set by hardware but must be cleared by software.

Typically, RI is set at the end of character reception and indicates "receive buffer
full." This condition is tested in software or programmed to cause an interrupt. (Interrupts
are discussed in Chapter 6.) If software wishes to input a character from the device con-
nected to the serial port (perhaps a video display terminal), it must wait until RI is set,
then clear RI and read the character from SBUF. This is shown below.

WAIT: JNB RI,WAIT ; CHECK RI UNTIL SET
CLR RI ; CLEAR RI
MOV A,SBUF ; READ CHARACTER

TI is set at the end of character transmission and indicates "transmit buffer empty."
If software wishes to send a character to the device connected to the serial port, it must
first check that the serial port is ready. In other words, if a previous character was sent,
wait until transmission is finished before sending the next character. The following
instructions transmit the character in the accumulator:

WAIT: JNB TI,WAIT ;CHECK TI UNTIL SET

CLR TI ;CLEAR TI
MOV SBUF,A ;SEND CHARACTER

The receive and transmit instruction sequences above are usually part of standard input
character and output character subroutines. These are described in more detail in Example
5.2 and Example 5.3.

5.8 MULTIPROCESSOR COMMUNICATIONS

Modes 2 and 3 have a special provision for multiprocessor communications. In these modes,
nine data bits are received and the ninth bit goes into RB8. The port can be programmed so

120 | CHAPTER 5

FIGURE 5-7
Multiprocessor communication

that when the stop bit is received, the serial port interrupt is activated only if RB8 = 1. This
feature is enabled by setting the SM2 bit in SCON. An application of this is in a networking
environment using multiple 8051s in a master/slave arrangement, as shown in Figure 5-7.

When the master processor wants to transmit a block of data to one of several slaves,
it first sends out an address byte that identifies the target slave. An address byte differs
from a data byte in that the ninth bit is 1 in an address byte and 0 in a data byte. An address
byte, however, interrupts all slaves, so that each can examine the received byte to test if it
is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the
data bytes that follow. The slaves that weren't addressed leave their SM2 bits set and go
about their business, ignoring the incoming data bytes. They will be interrupted again when
the next address byte is transmitted by the master processor. Special schemes can be
devised so that once a master/slave link is established, the slave can also transmit to the
master. The trick is not to use the ninth data bit after a link has been established (otherwise
other slaves may be inadvertently selected).

SM2 has no effect in mode 0, and in mode 1 it can be used to check the validity of
the stop bit. In mode 1 reception, if SM2 = 1, the receive interrupt will not be activated un-
less a valid stop bit is received.

5.9 SERIAL PORT BAUD RATES

As evident in Table 5-2, the baud rate is fixed in modes 0 and 3. In mode 0 it is always the
on-chip oscillator frequency divided by 12. Usually a crystal drives the 8051's on-chip
oscillator, but another clock source can be used as well. (See Chapter 2.) Assuming a
nominal oscillator frequency of 12 MHz, the mode 0 baud rate is 1 MHz. (See Figure 5-8a.)

By default following a system reset, the mode 2 baud rate is the oscillator frequency
divided by 64. The baud rate is also affected by a bit in the power control register, PCON.

SERIAL PORT OPERATION | 121

FIGURE 5-8
Serial port clocking sources (a) Mode 0 (b) Mode 2 (c) Modes 1 and 3

Bit 7 of PCON is the SMOD bit. Setting SMOD has the effect of doubling the baud rate in
modes 1, 2, and 3. In mode 2, the baud rate can be doubled from a default value of 1/64th
the oscillator frequency (SMOD = 0), to 1/32nd the oscillator frequency (SMOD = 1). (See
Figure 5-8b.)

Since PCON is not bit-addressable, setting SMOD without altering the other PCON
bits requires a "read-modify-write" operation. The following instructions set SMOD:

MOV A,PCON ;GET CURRENT VALUE OF PCON
SETB ACC.7 ;SET BIT 7 (SMOD)
MOV PCON,A ;WRITE VALUE BACK TO PCON

The 8051 baud rates in modes 1 and 3 are determined by the Timer 1 overflow rate. Since
the timer operates at a relatively high frequency, the overflow is further divided by 32 (16
if SMOD = 1) before providing the baud rate clock to the serial port. The 8052 baud rate
in modes 1 and 3 is determined by the Timer 1 or Timer 2 overflow rates, or both.

5.9.1 Using Timer 1 as the Baud Rate Clock

Considering only an 8051 for the moment, the usual technique for baud rate generation is to
initialize TMOD for 8-bit auto-reload mode (timer mode 2) and put the correct reload value
in TH1 to yield the proper overflow rate for the baud rate. TMOD is initialized as follows:

MOV TMOD,#0010xxxxB

The x's are 1s or 0s as needed for Timer 0.

122 | CHAPTER 5

This is not the only possibility. Very low baud rates can be achieved by using 16-bit
mode, timer mode 2 with TMOD = 0001xxxxB. There is a slight software overhead,
however, since the TH1/TL1 registers must be reinitialized after each overflow. This
would be performed in an interrupt service routine. Another option is to clock Timer 1
externally using T1 (P3.5). Regardless the baud rate is the Timer 1 overflow rate divided
by 32 (or divided by 16, if SMOD = 1).

The formula for determining the baud rate in modes 1 and 3, therefore, is

BAUD RATE = TIMER1 OVERFLOW RATE 32

For example, 1200 baud operation requires an overflow rate calculated as follows:

1200 = TIMER1 OVERFLOW RATE 32
TIMER1 OVERFLOW RATE = 38.4 kHz

If a 12 MHz crystal drives the on-chip oscillator, Timer 1 is clocked at a rate of 1
MHz or 1000 kHz. Since the timer must overflow at a rate of 38.4 kHz and the timer is
clocked at a rate of 1000 kHz, an overflow is required every 1000 38.4 = 26.04 clocks.
(Round to 26.) Since the timer counts up and overflows on the 0FFH-to-00H transition of
the count, 26 counts less than 0 is the required reload value for TH1. The correct value is
-26. The easiest way to put the reload value into TH1 is

MOV TH1,#-26

The assembler will perform the necessary conversion. In this case -26 is converted
to 0E6H; thus, the instruction above is identical to

MOV TH1,#0E6H

Due to rounding, there is a slight error in the resulting baud rate. Generally, a 5% er-
ror is tolerable using asynchronous (start/stop) communications. Exact baud rates are pos-
sible using an 11.059 MHz crystal. Table 5-3 summarizes the TH1 reload values for the
most common baud rates, using a 12.000 MHz or 11.059 MHz crystal.

TABLE 5-3
Baud rate summary

TH1 Reload Actual Baud

Baud Rate Crystal Frequency SMOD Value Rate Error

9600 12.000 MHz 1 -7 (0F9H) 8923 7%
2400 12.000 MHz 0 -13 (0F3H) 2404 0.16%
1200 12.000 MHz 0 -26 (0E6H) 1202 0.16%
19200 11.059 MHz 1 -3 (0FDH) 19200 0
9600 11.059 MHz 0 -3 (0FDH) 9600 0
2400 11.059 MHz 0 -12 (0F4H) 2400 0
1200 11.059 MHz 0 -24 (0E8H) 1200 0

SERIAL PORT OPERATION | 123

EXAMPLE Initializing the Serial Port
5.1 Write an instruction sequence to initialize the serial port to operate as an 8-bit UART at

2400 baud. Use Timer 1 to provide the baud rate clock.

Solution

For this example, four registers must be initialized: SMOD, TMOD, TCON, and TH1.
The required values are summarized below.

Setting SM0/SM1 = 0/1 puts the serial port into 8-bit UART mode. REN = 1 enables the
serial port to receive characters. Setting TI = 1 allows transmission of the first character
by indicating that the transmit buffer is empty. For TMOD, setting M1/M0 = 1/0 puts
Timer 1 into 8-bit auto-reload mode. Setting TR1 = 1 in TCON turns on Timer 1. The
other bits are shown as 0s, since they control features or modes not used in this example.

Discussion

The required TH1 value is that which provides overflows at the rate of 2400 x 32 = 76.8
kHz. Assuming the 8051 is clocked from a 12 MHz crystal, Timer 1 is clocked at a rate of
1 MHz or 1000 kHz, and the number of clocks for each overflow is 1000 76.8 = 13.02.
(Round to 13.) The reload value is -13 or 0F3H.

The initialization instruction sequence is shown below.

EXAMPLE Output Character Subroutine
5.2 Write a subroutine called OUTCHR to transmit the 7-bit ASCII code in the accumulator

out the 8051 serial port, with odd parity added as the eighth bit. Return from the subrou-
tine with the accumulator intact, i.e., containing the same value as before the subroutine
was called.

124 | CHAPTER 5

Solution

This example and the next illustrate two of the most common subroutines on microcom-
puter systems with an attached RS232 terminal: output character (OUTCHR) and input
character (INCHAR).

8100 5 ORG 8100H

8100 A2D0 6 OUTCHR: MOV C.P ;put parity bit in C flag

8102 B3 7 CPL C ;change to odd parity

8103 92E7 8 MOV ACC.7.C ;add to character code

8105 3099FD 9 AGAIN: JNB TI.AGAIN ;Tx empty? no:check again

8108 C299 10 CLR TI ;yes: clear flag and

810A F599 11 MOV SBUF.A ;send character

810C C2E7 12 CLR ACC.7 ;strip off parity bit and

810E 22 13 RET ; return

14 END

Discussion

The first three instructions place odd parity in the accumulator bit 7. Since the P bit in the
PSW establishes even parity with the accumulator, it is complemented before being placed
in ACC.7. The JNB instruction creates a "wait loop," repeatedly testing the transmit inter-
rupt flag (TI) until it is set. When TI is set (because the previous character transmission is
finished), it is cleared and then the character in the accumulator is written into the serial
port buffer (SBUF). Transmission begins on the next rollover of the divide-by-l6 counter
that clocks the serial port. (See Figure 5-5.) Finally, ACC.7 is cleared so that the return
value is the same as the 7-bit code passed to the subroutine.

The OUTCHR subroutine is a building block and is of little use by itself. At a
"higher level" this subroutine is called to transmit a single character or a string of
characters. For example, the following instructions transmit the ASCII code for the letter
"Z" to the serial device attached to the 8051's serial port:

MOV A.#'Z'

CALL OUTCHR

(continue)

As a natural extension to this idea, Problem 1 at the end of this chapter uses OUTCHR as
a building block in an OUTSTR (output string) subroutine that transmits a sequence of
ASCII codes (terminated by a NULL byte, 00H) to the serial device attached to the 8051's
serial port.

EXAMPLE Input Character Subroutine
5.3 Write a subroutine called INCHAR to input a character from the 8051's serial port and re-

turn with the 7-bit ASCII code in the accumulator. Expect odd parity in the eighth bit re-
ceived and set the carry flag if there is a parity error.

SERIAL PORT OPERATION | 125

Solution

Discussion

This subroutine begins by waiting for the receive interrupt flag (RI) to be set, indicating
that a character is waiting in SBUF to be read. When RI is set, the JNB instruction falls
through to the next instruction. RI is cleared and the code in SBUF is read into the accu-
mulator. The P bit in the PSW establishes even parity with the accumulator, so it should
be set if the accumulator, on its own, correctly contains odd parity in bit 7. Moving the P
bit into the carry flag and complementing it leaves CY = 0 if there is no error. On the
other hand, if the accumulator contains a parity error, then CY = 1, correctly indicating
"parity error." Finally, ACC.7 is cleared to ensure that only a 7-bit code is returned to the
calling program.

EXAMPLE Full Duplex Operation
5.4 Write a program that continually transmits characters from a transmit buffer (internal

RAM 30H to 4FH). If incoming characters are detected on the serial port, store them in
the receive buffer starting at internal RAM location 50H. Assume that the 8051 serial port
has already been initialized in mode H.

Solution

This example shows how the serial port can be used in full duplex operation, i.e., trans-
mission and reception are done simultaneously.

126 | CHAPTER 5

Discussion

This program first uses the two registers R0 and R1 to point to the transmit and receive
buffers respectively. It then checks to see if a character has been received or if the
previous character to be transmitted has already been sent out. Notice that reception is
processed first. This is because reception is more critical since the 8051 is depending on
an external device for an incoming character, which must be processed and stored as soon
as possible else it might be overwritten by subsequent incoming characters. Recall that the
serial port can hold at most one character in its buffer while a second is being received. If
an incoming character has been fully received, it is read from SBUF and checked for
parity before being stored into the receive buffer whose current empty location is pointed
to by R1. R1 is next incremented to point to the next available location and the program
goes back to checking. When the previous transmission is finished, the program first gets
the character to be transmitted from the transmit buffer. R0 is used as the pointer to the
next character in the transmit buffer. The odd parity is then placed in bit 7 of the code
before it is sent to the SBUF for transmission. R1 is then incremented to point to the next
character. The program also checks for the end of the transmit buffer, upon which it
would recycle back to the beginning of the buffer. Finally, the program goes back to
checking for further receptions or transmission.

SERIAL PORT OPERATION | 127

EXAMPLE Compensating for the Round-off Errors
5.5 Calculate the round-off error for the baud rate of the serial port in Example 5.1. Assuming

the same Timer 1 reload value of -13 or 0F3H is to be used, calculate the value of the crystal
frequency for an exact baud rate of 2400 baud.

Solution

The round-off error for the baud rate is:

Discussion

The desired baud rate is 2400 baud. The rounded-off Timer 1 reload value is -13 for 13
µs, causing an overflow rate of 76.9kHz, which in turn causes a baud rate of 76.9 kHz
32 = 2403.8 baud.

In the calculation of the desired crystal frequency to produce an exact baud rate of
2400, we can use the ratio technique, as shown in the solution above. Let's check if causes
an exact 2400 baud rate. A crystal frequency of 11.98MHz means that Timer 1 increments
at a rate of 11.98 MHz12 = 0.998 MHz so the duration of one count is
1/0.998 MHz =1.002 µs. The reload value for Timer 1 is -13 so it overflows every 13 x
1.002 µS =1.3026 µS, hence the overflow rate is 1/1.3026 µs = 76.77 kHz. This causes a
baud rate of 76.77 kHz 32 = 2399 baud 2400 baud.

A more commonly used crystal frequency is 11.059 MHz rather than 11.98MHz. In
this case, the Timer 1 reload value would have to be -12 instead of -13. To check that it
results in an exact baud rate of 2400, note that Timer 1 increments at a rate of 11.059
MHz12 = 0.9216 MHz so the duration of one count is 1/0.9216 MHz = 1.085 µs. The reload
value for Timer 1 is -12 so it overflows every 12 x 1.085 µs = 13.02 µs, hence the overflow
rate is 1/13.02 µs= 76.8 kHz. This causes a baud rate of 76.8 kHz / 32 = 2400 baud.

It is clear then that the crystal frequency to eliminate round-off errors in the baud
rate would vary depending on the Timer 1 reload value used.

SUMMARY

This chapter has presented the major details required to program the 8051 serial port. A passing
mention has been made in this chapter and in the last chapter of the use of interrupts. Indeed,

128 | CHAPTER 5

advanced applications using the 8051 timers or serial ports generally require input/output
operations to be synchronized by interrupts. This is the topic of the next chapter.

PROBLEMS
The following problems are typical of the software routines for interfacing terminals (or
other serial devices) to a microcomputer. Assume the 8051 serial port is initialized in 8-bit
UART mode and the baud rate is provided by Timer 1.

5.1 Write a subroutine called OUTSTR that sends a null-terminated string of ASCII
codes to the device (perhaps a VDT) connected to the 8051 serial port. Assume the
string of ASCII codes is in external code memory and the calling program puts the
address of the string in the data pointer before calling OUTSTR. A null-terminated
string is a series of ASCII bytes terminated with a 00H byte.

5.2 Write a subroutine called INLINE that inputs a line of ASCII codes from the
device connected to the 8051 serial port and places it in internal data memory
beginning at address 50H. Assume the line is terminated with a carriage return
code. Place the carriage return code in the line buffer along with the other codes,
and then terminate the line buffer with a null byte (00H).

5.3 Write a program that continually sends the alphabet (lowercase) to the device at-
tached to the 8051 serial port. Use the OUTCHR subroutine written earlier.

5.4 Assuming the availability of the OUTCHR subroutine, write a program that contin-
ually sends the displayable ASCII set (codes 20H to 7EH) to the device attached to
the 8051 serial port.

5.5 Modify the solution to the above problem to suspend and resume output to the
screen, using XOFF and XON codes entered on the keyboard. All other codes
received should be ignored. (Note: XOFF = CONTROL-S = 13H, XON =
CONTROL-Q = 11H)

5.6 Assume the availability of the INCHAR and OUTCHR subroutines and write a
program that inputs characters from the keyboard and echoes them back to the
screen, converting lowercase characters to uppercase.

5.7 Assume the availability of the INCHAR and OUTCHR subroutines and write a
program that inputs characters from the device attached to the 8051 serial port and
echoes them back substituting period (.) for any control characters (ASCII codes
00H to 1FH, and 7FH).

5.8 Assume the availability of the OUTCHR subroutine, and write a program that
clears the screen on the VDT attached to the 8051 serial port and then sends your
name to the VDT 10 times on 10 separate lines. The clear screen function on VDTs
is accomplished by transmitting a CONTROL-Z on many terminals or <ESC> [2 J
on terminals that support ANSI (American National Standards Institute) escape
sequences. Use either method in your solution.

5.9 Figure 5-4 illustrates a technique for expanding the output capability of the 8051.
Assuming such a configuration, write a program that initializes the 8051 serial port

SERIAL PORT OPERATION | 129

for shift register mode and then maps the contents of internal memory location 20H to the eight
extra outputs, 10 times per second.

5.10 Which type of serial communication does the 8051's serial port support? Simplex, half- or full
duplex? Why? Explain the components within the serial port and how they support this type of
serial communication.

5.11 Explain how the 8051's input/output (I/O) capability can be expanded by using the serial port.
What is the disadvantage of such a method?

5.12 Write a subroutine called OUTCHR9 to transmit a 9-bit code (C8C7C6C5C4C3- C2C1C0) out the 8051
serial port. Note that C8 is in the LSB of B register while C7C6C5C4C3C2C1C0 are in the
accumulator. Return from the subroutine with all registers intact.

5.13 Write a subroutine called INCHAR8 to input an 8-bit extended ASCII character from the 8051's
serial port and return with the 8-bit code in the accumulator. Expect odd parity in the ninth bit
received and set the carry flag if there is a parity error.

5.14 Write a subroutine called OUTCHR8 to transmit the 8-bit extended ASCII code in the accumulator
out the 8051 serial port, with odd parity added as the ninth bit. Return from the subroutine with the
accumulator intact.

5.15 a. Write an instruction sequence to initialize the serial port to operate as a 9-bit UART at 9600
baud. Use Timer 1 to provide the baud rate clock, assuming that the crystal oscillator
frequency, fosc = 12 MHz.

b. Is the resulting baud rate exactly 9600 baud? If not, what is the percentage error (% error)?
Hence, calculate the value of fosc to achieve an exact baud rate of 9600 baud.

130 | CHAPTER 5

Interrupts

6.1 INTRODUCTION

An interrupt is the occurrence of a condition—an event—that causes a temporary suspen-
sion of a program while the condition is serviced by another program. Interrupts play an
important role in the design and implementation of microcontroller applications. They allow
a system to respond asynchronously to an event and deal with the event while another
program is executing. An interrupt-driven system gives the illusion of doing many things
simultaneously. Of course, the CPU cannot execute more than one instruction at a time; but it
can temporarily suspend execution of one program, execute another, then return to the first
program. In a way, this is like a subroutine. The CPU executes another program—the
subroutine—and then returns to the original program. The difference is that in an interrupt-
driven system, the interruption is a response to an "event" that occurs asynchronously with
the main program. It is not known when the main program will be interrupted.

The program that deals with an interrupt is called an interrupt service routine (ISR)
or interrupt handler. The ISR executes in response to the interrupt and generally performs
an input or output operation to a device. When an interrupt occurs, the main program tem-
porarily suspends execution and branches to the ISR; the ISR executes, performs the opera-
tion, and terminates with a "return from interrupt" instruction; the main program continues
where it left off. It is common to refer to the main program as executing at base-level and
the ISRs as executing at interrupt-level. The terms foreground (base-level) and back-
ground (interrupt-level) are also used. This brief view of interrupts is depicted in Figure 6-
1, showing (a) the execution of a program without interrupts and (b) execution at base-level
with occasional interrupts and ISRs executing at interrupt-level.

A typical example of interrupts is manual input, using a keyboard. Consider an appli-
cation for a microwave oven. The main program (foreground) might control a microwave
power element for cooking; yet, during cooking, the system must respond to manual input

131

132 | CHAPTER 6

FIGURE 6-1
Program execution with and without interrupts (a) Without interrupts (b) With interrupts

on the oven's door, such as a request to shorten or lengthen the cooking time. When the user
depresses a key, an interrupt is generated (a signal goes from high to low, perhaps) and the
main program is interrupted. The ISR takes over in the background, reads the keyboard
code(s) and changes the cooking conditions accordingly, and finishes by passing control back
to the main program. The main program carries on where it left off. The important point in
this example is that manual input occurs "asynchronously"; that is, it occurs at intervals not
predictable or controlled by the software running in the system. This is an interrupt.

6.2 8051 INTERRUPT ORGANIZATION

There are five interrupt sources on the 8051: two external interrupts, two timer interrupts,
and a serial port interrupt. The 8052 adds a sixth interrupt source from the extra timer. All
interrupts are disabled after a system reset and are enabled individually by software.

In the event of two or more simultaneous interrupts or an interrupt occurring while
another interrupt is being serviced, there is both a polling sequence and a two-level
priority scheme to schedule the interrupts. The polling sequence is fixed but the interrupt
priority is programmable.

Let's begin by examining ways to enable and disable interrupts.

6.2.1 Enabling and Disabling Interrupts

Each of the interrupt sources is individually enabled or disabled through the bit-addressable
special function register IE (interrupt enable) at address 0A8H. As well as individual enable

INTERRUPTS | 133

TABLE 6-1
IE (interrupt enable) register summary

bits for each interrupt source, there is a global enable/disable bit that is cleared to disable
all interrupts or set to turn on interrupts. (See Table 6-1.)

Two bits must be set to enable any interrupt: the individual enable bit and the global
enable bit. For example, timer 1 interrupts are enabled as follows:

SETB ET1 ;ENABLE Timer 1 INTERRUPT

SETB EA ;SET GLOBAL ENABLE BIT

This could also be coded as

MOV IE,#10001000B

Although these two approaches have exactly the same effect following a system reset, the
effect is different if IE is written "on-the-fly" in the middle of a program. The first
approach has no effect on the other five bits in the IE register, whereas the second approach
explicitly clears the other bits. It is fine to initialize IE with a "move byte" instruction at the
beginning of a program (i.e., following a power-up or system reset), but enabling and
disabling interrupts on-the-fly within a program should use "set bit" and "clear bit"
instructions to avoid side effects with other bits in the IE register.

6.2.2 Interrupt Priority

Each interrupt source is individually programmed to one of two priority levels through the
bit-addressable special function register IP (interrupt priority) at address 0B8H. (See
Table 6-2.)

IP is cleared after a system reset to place all interrupts at the lower priority level by
default. The idea of "priorities" allows an ISR to be interrupted by an interrupt if the new
interrupt is of higher priority than the interrupt currently being serviced. This is straight-
forward on the 8051, since there are only two priority levels. If a low-priority ISR is exe-
cuting when a high-priority interrupt occurs, the ISR is interrupted. A high-priority ISR
cannot be interrupted.

134 | CHAPTER 6

TABLE 6-2

IP (interrupt priority) register summary

Bit Symbol Bit Address Description (1 = Higher Level, 0 = Lower Level)

IP.7 — — Undefined
IP.6 — — Undefined
IP.5 PT2 0BDH Priority for Timer 2 interrupt (8052)
IP.4 PS 0BCH Priority for serial port interrupt

IP.3 PT1 0BBH Priority for Timer 1 interrupt
IP.2 PX1 0BAH Priority for external 1 interrupt
IP.1 PT0 0B9H Priority for Timer 0 interrupt
IP.0 PX0 0B8H Priority for external 0 interrupt

The main program, executing at base level and not associated with any
interrupt, can always be interrupted regardless of the priority of the interrupt. If
two interrupts of different priorities occur simultaneously, the higher priority
interrupt will be serviced first.

6.2.3 Polling Sequence

If two interrupts of the same priority occur simultaneously, a fixed polling sequence
determines which is serviced first. The polling sequence is external 0, Timer 0,
external 1, Timer 1, Serial Port, Timer 2.

Figure 6-2 illustrates the five interrupt sources, the individual and global
enable mechanism, the polling sequence, and the priority levels. The state of all
interrupt sources is available through the respective flag bits in the SFRs. Of
course, if any interrupt is disabled, an interrupt does not occur, but software can
still test the interrupt flag. The timer and serial port examples in the previous two
chapters used the interrupt flags extensively without actually using interrupts.

A serial port interrupt results from the logical OR of a receive interrupt (8052)
or a transmit interrupt (TI). Likewise, Timer 2 interrupts are generated by a time
overflow (TF2) or by the external input flag (EXF2). The flag bits that generate
interrupts are summarized in Table 6-3.

TABLE 6-3

Interrupt flag bits

136 | CHAPTER 6

6.3 PROCESSING INTERRUPTS

When an interrupt occurs and is accepted by the CPU, the main program is interrupted.
The following actions occur:

 The current instruction completes execution.
 The PC is saved on the stack.
 The current interrupt status is saved internally.
 Interrupts are blocked at the level of the interrupt.
 The PC is loaded with the vector address of the ISR.
 The ISR executes.

The ISR executes and takes action in response to the interrupt. The ISR finishes
with a RETI (return from interrupt) instruction. This retrieves the old value of the PC from
the stack and restores the old interrupt status. Execution of the main program continues
where it left off.

6.3.1 Interrupt Vectors

When an interrupt is accepted, the value loaded into the PC is called the interrupt vector.
It is the address of the start of the ISR for the interrupting source. The interrupt vectors are
given in Table 6-4.

The system reset vector (RST at address 0000H) is included in this table, since, in this
sense, it is like an interrupt: it interrupts the main program and loads the PC with a new value.

When "vectoring to an interrupt," the flag that caused the interrupt is automatically
cleared by hardware. The exceptions are RI and TI for serial port interrupts, and TF2 and
EXF2 for Timer 2 interrupts. Since there are two possible sources for each of these inter-
rupts, it is not practical for the CPU to clear the interrupt flag. These bits must be tested in
the ISR to determine the source of the interrupt, and then the interrupting flag is cleared by
software. Usually a branch occurs to the appropriate action, depending on the source of
the interrupt.

Since the interrupt vectors are at the bottom of code memory, the first instruction of
the main program is often a jump above this area of memory, such as LJMP 0030H.

TABLE 6-4

Interrupt vectors

Interrupt Flag Vector Address

System reset
External 0
Timer 0
External 1
Timer 1
Serial port
Timer 2

RST
IE0
TF0
IE1
TF0
RI or TI
TF2 or EXF2

0000H
0003H
000BH
0013H
001BH
0023H
002BH

INTERRUPTS | 137.

6.4 PROGRAM DESIGN USING INTERRUPTS

The examples in Chapter 3 and Chapter 4 did not use interrupts but made extensive use of
"wait loops" to test the timer overflow flags (TF0, TF1, or TF2) or the serial port transmit
and receive flags (TI or RI). The problem in this approach is that the CPU's valuable ex-
ecution time is fully consumed waiting for flags to be set. This is inappropriate for control-
oriented applications where a microcontroller must interact with many input and output
devices simultaneously.

In this section, examples are developed to demonstrate practical methods for imple-
menting software for control-oriented applications. The key ingredient is the interrupt. Al-
though the examples are not necessarily bigger, they are more complex, and in recognition
of this, we proceed one step at a time. The reader is advised to follow the examples slowly
and to examine the software meticulously. Some of the most difficult bugs in system
designs often involve interrupts. The details must be understood thoroughly.

Since we are using interrupts, the examples will be complete and self-contained. Each
program starts at address 0000H with the assumption that it begins execution following a
system reset. The idea is that eventually these programs develop into full-fledged applica-
tions that reside in ROM or EPROM.

The suggested framework for a self-contained program using interrupts is shown below.

The first instruction jumps to address 0030H, just above the vector locations where
the ISRs begin, as given in Table 6-4. As shown in Figure 6-3, the main program begins at
address 0030H.

6.4.1 Small Interrupt Service Routines

Interrupt service routines must begin near the bottom of code memory at the addresses
shown in Table 6-4. Although there are only eight bytes between each interrupt entry
point, this is often enough memory to perform the desired operation and return from the
ISR to the main program.

If only one interrupt source was used, say Timer 0, then the following framework
could be used:

ORG 0000H ;RESET
LJMP MAIN

ORG 000BH ;Timer 0 ENTRY POINT

138 | CHAPTER 6
If more interrupts are used, care must be taken to ensure they start at the correct location
(see Table 6-4) and do not overrun the next ISR. Since only one interrupt is used in the
example above, the main program can begin immediately after the RETI instruction.

6.4.2 Large Interrupt Service Routines

If an ISR is longer than eight bytes, it may be necessary to move it elsewhere in code
memory or it may trespass on the entry point for the next interrupt. Typically, the ISR
begins with a jump to another area of code memory where the ISR can stretch out.
Considering only Timer 0 for the moment, the following framework could be used:

FIGURE 6-3
Memory organization when interrupts are used

INTERRUPTS | 139

To keep it simple, our programs will only do one thing at a time initially. The main or
foreground program initializes the timer, serial port, and interrupt registers as appropriate,
and then does nothing. The work is done totally in the ISR. After the initialize
instructions, the main program consists of the following instruction:

HERE: SJMP HERE

When an interrupt occurs, the main program is interrupted temporarily while the
ISR executes. The RETI instruction at the end of the ISR returns control to the main
program, and it continues doing nothing. This is not as farfetched as one might think. In
control-oriented applications, the bulk of the work is in fact done in the interrupt routines.

6.5 TIMER INTERRUPTS

Timer interrupts occur when the timer overflow flag, TFx, is set upon overflow of the
timer registers, THx/TLx. When the 8051 goes to service this interrupt, the timer overflow
flag, TFx is automatically cleared by hardware. Therefore, with interrupts enabled, there is
no need to explicitly clear TFx in software as was done in Chapter 4 where timers were
used without interrupts.

EXAMPLE Square Wave Using Timer Interrupts

6.1 Write a program using Timer 0 and interrupts to create a 10 kHz square wave on P1.0.

Solution

Discussion

With timer interrupts enabled, the event that generates the interrupt is the setting of the
timer flag, TFx, upon overflow of the timer registers, THx/TLx. This example appears in
Chapter 4 without using interrupts. The bulk of the program is the same except it is now
organized into the framework for interrupts.

The solution is a complete program. It could be burned into EPROM and installed in
an 8051 single-board computer for execution. Immediately after reset, the program counter
is loaded with 0000H. The first instruction executed is LJMP MAIN, which branches over
the timer ISR to address 0030H in code memory. The next three instructions (lines 11-13)

140 | CHAPTER 6

initialize Timer 0 for 8-bit auto-reload mode with overflows every 50 µs. The MOV instruc-
tion in line 14 enables Timer 0 interrupts, so each overflow of the timer generates an interrupt.
Of course, the first overflow will not occur for 50 µs, so the main program falls through to the
"do-nothing" loop. Each 50 µs an interrupt occurs; the main program is interrupted and the
Timer 0 ISR executes. The ISR simply complements the port bit (line 8) and returns to the
main program (line 9) where the do-nothing loop executes for another 50 µs.

Note that the timer flag, TF0, is not explicitly cleared by software. When interrupts
are enabled, TF0 is automatically cleared by hardware when the CPU services the
interrupt.

Since the solution is a "complete" program, we must be aware of how the stack is
operating. The return address for the ISR is the location of the SJMP instruction. This
address is pushed on the 8051's internal stack prior to vectoring to the interrupt and is
popped from the stack when the RETI instruction executes (line 9). Since the SP was not
initialized, it defaults to the reset value of 07H. The push operation leaves the return
address in internal RAM locations 08H (PCH) and 09H (PCL).

EXAMPLE Two Square Waves Using Interrupts
6.2 Write a program using interrupts to simultaneously create 7 kHz and 500 Hz square

waves on P1.7 and P1.6.

Solution
The hardware configuration with the timings for the desired waveforms is shown in Figure
6-4.

This combination of outputs would be extremely difficult to generate on a non-inter-
rupt-driven system. Timer 0, providing synchronization for the 7 kHz signal, operates in
mode 2, as in the previous example; and timer 1, providing synchronization for the 500 Hz
signal, operates in mode 1, 16-bit timer mode. Since 500 Hz requires a high-time of 1 ms

FIGURE 6-4
Waveform example

INTERRUPTS | 141

and low-time of 1 ms, mode 2 cannot be used. (Recall that 256 ms is the maximum timed
interval in mode 2 when the 8051 is operating at 12 MHz.) Here's the program:

Discussion

Again, the framework is for a complete program that could be installed in EPROM or
ROM on an 8051-based product. The main program and the ISRs are located above the

vector locations for the system reset and interrupts. Both waveforms are created by

"CPL bit" instructions; however, the timed intervals necessitate a slightly different

approach for each.

Since the TL1/TH1 registers must be reloaded after each overflow (i.e., after each in-

terrupt), Timer 1 ISR (a) stops the timer, (b) reloads TL1/TH1, (c) starts the timer, and then

(d) complements the port bit. Note also that TL1/TH1 are not initialized at the beginning of

the main program, unlike TH0. Since TL1/TH1 must be reinitialized after each overflow, TF1
is set in the main program by software to "force" an initial interrupt as soon as interrupts are

turned on. This effectively gets the 500 Hz waveform started.

The Timer 0 ISR, as in the previous example, simply complements the port bit and
returns to the main program. SJMP $ is used in the main program as the abbreviated form of
HERE: SJMP HERE. The two forms are functionally equivalent. (See "Special Assembler
Symbols" in Chapter 7.)

142 | CHAPTER 6

6.6 SERIAL PORT INTERRUPTS

Serial port interrupts occur when either the transmit interrupt flag (TI) or the receive inter-
rupt flag (RI) is set. A transmit interrupt occurs when transmission of the previous
character written to SBUF has finished. A receive interrupt occurs when a character has
been completely received and is waiting in SBUF to be read.

Serial port interrupts are slightly different from timer interrupts. The flag that causes
a serial port interrupt is not cleared by hardware when the CPU vectors to the interrupt.
The reason is that there are two sources for a serial port interrupt, TI or RI. The source of
the interrupt must be determined in the ISR and the interrupting flag cleared by software.
Recall that with timer interrupts the interrupting flag is cleared by hardware when the
processor vectors to the ISR.

EXAMPLE Character Output Using Interrupts
6.3 Write a program using interrupts to continually transmit the ASCII code set (excluding

control codes) to a terminal attached to the 8051's serial port.

Solution

There are 128 7-bit codes in the ASCII chart. (See Appendix F.) These consist of 95 graphic
codes (20H to 7EH) and 33 control codes (00H to 1FH, and 7FH). The program shown below
is self-contained and executable from EPROM or ROM immediately after a system reset.
D

A
t

iscussion

fter jumping to MAIN at code address 0030H, the first three instructions initialize Timer 1

o provide a 1200 baud clock to the serial port (lines 10-12). MOV SCON,#42H initializes

INTERRUPTS | 143

the serial port for mode 1 (8-bit UART) and sets the TI flag to force an interrupt as soon as
interrupts are enabled. Then, the first ASCII graphic code (20H) is loaded into A and
serial port interrupts are enabled. Finally, the main body of the program enters a do-
nothing loop (SJMP $).

The serial port interrupt service routine does all the work once the main program
sets up initial conditions. The first two instructions check the accumulator, and if the
ASCII code has reached 7FH (i.e., the last code transmitted was 7EH), reset the
accumulator to 20H (lines 19-20). Then, the ASCII code is sent to the serial port buffer
(MOV SBUF,A), the code is incremented (INC A), the transmit interrupt flag is cleared
(CLR TI), and the ISR is terminated (RETI). Control returns to the main program and
SJMP $ executes until TI is set at the end of the next character transmission.

If we compare the CPU's speed to the rate of character transmission, we see that
SJMP $ executes for a very large percentage of the time for this program. What is this per-
centage? At 1200 baud, each bit transmitted takes 11200 = 0.833 ms. Eight data bits plus a
start-and-stop bit, therefore, take 8.33 ms or 8333 µs. The worst-case execution time for the
SPJSR is found by totaling the number of cycles for each instruction and multiplying by 1
µs (assuming 12 MHz operation). This turns out to be 8 µs. So, of the 8333 µs for each
character transmission, only 8 µs are for the interrupt service routine. The SJMP $
instruction executes about 8325 8333 x 100 = 99.90% of the time. Since interrupts are
used, the SJMP $ instruction could be replaced with other instructions performing other
tasks required in the application. Interrupts would still occur every 8.33 ms, and characters
would still be transmitted out the serial port as they are in the above program.

6.7 EXTERNAL INTERRUPTS

External interrupts occur as a result of a low-level or negative edge on the INT0 or INT1
pin on the 8051 IC. These are the alternate functions for Port 3 bits P3.2 (pin 12) and P3.3
(pin 13), respectively.

The flags that actually generate these interrupts are bits IE0 and IE1 in TCON.
When an external interrupt is generated, the flag that generated it is cleared by hardware
when vectoring to the ISR only if the interrupt was transition-activated. If the interrupt
was level-activated, then the external requesting source controls the level of the request
flag, rather than the on-chip hardware.

The choice of low-level-activated interrupts versus negative-edge-activated interrupts
is programmable through the IT0 and IT1 bits in TCON. For example, if IT1 = 0, external
interrupt 1 is triggered by a detected low at the INT1 pin. If IT1 = 1, external interrupt 1 is
edge-triggered. In this mode, if successive samples of the INT1 pin show a high in one
cycle and a low in the next, the interrupt request flag IE1 in ICON is set. Flag bit IE1 then
requests the interrupt.

Since the external interrupt pins are sampled once each machine cycle, an input
should be held for at least 12 oscillator periods to ensure proper sampling. If the external
interrupt is transition-activated, the external source must hold the request pin high for at
least one cycle and then hold it low for at least one more cycle to ensure the transition is
detected. IE0 and IE1 are automatically cleared when the CPU vectors to the interrupt.

144 | CHAPTER 6

If the external interrupt is level-activated, the external source must hold the request
active until the requested interrupt is actually generated. Then it must deactivate the
request before the interrupt service routine is completed, or another interrupt will be
generated. Usually, an action taken in the ISR causes the requesting source to return the
interrupting signal to the inactive state.

EXAMPLE Furnace Controller
6.4 Using interrupts, design an 8051 furnace controller that keeps a building at 20°C ± 1°C.

Solution

The following interface is assumed for this example. The furnace ON/OFF solenoid is
connected to P1.7 such that

P1.7 = 1 for solenoid engaged (furnace ON)
P1.7 = 0 for solenoid disengaged (furnace OFF)

Temperature sensors are connected to INT0 and INT1 and provide HOT and COLD

signals, respectively, such that

HOT = 0 if T> 21°C
COLD = 0 if T< 19°C

The program should turn on the furnace for T < 19°C and turn it off for T > 21°C. The
hardware configuration and a timing diagram are shown in Figure 6-5.

Discussion

The first three instructions in the main program (lines 14-16) turn on external interrupts and

make both INT0 and INT1 negative-edge triggered. Since the current state of the HOT

(P3.3) and COLD (P3.3) inputs is not known, the next three instructions (lines 17-19) are

required to turn the furnace ON or OFF, as appropriate. First, the furnace is turned ON

INTERRUPTS | 145

FIGURE 6-5
Furnace example. (a) Hardware connections (b) Timing

(SETB P1.7), and then the HOT input is sampled (JB P3.2,SKIP). If HOT is high, then T
< 21°C, so the next instruction is skipped and the furnace is left ON. If, however, HOT is
low, then T > 21°C. In this case the jump does not take place. The next instruction turns
the furnace OFF (CLR P1.7) before entering the do-nothing loop.

Once everything is set up properly in the main program, little remains to be done.
Each time the temperature rises above 21°C or falls below 19°C, an interrupt occurs. The
ISRs simply turn the furnace ON (SETB P1.7) or OFF (CLR P1.7), as appropriate, and
return to the main program.

Note that an ORG 0003H statement is not necessary immediately before the
EX0ISR label. Since the LJMP MAIN instruction is three bytes long, EX0ISR is certain to
start at 0003H, the correct entry point for external 0 interrupts.

EXAMPLE Intrusion Warning System
6.5 Design an intrusion warning system using interrupts that sounds a 400 Hz tone for 1

second (using a loudspeaker connected to P1.7) whenever a door sensor connected to
INT0 makes a high-to-low transition.

146 | CHAPTER 6

FIGURE 6-6

Loudspeaker interface using interrupts (a) Hardware connections (b) Timing

Solution

The solution to this example uses three interrupts: external 0 (door sensor), Timer 0 (1
second timeout), and Timer 1 (400 Hz tone). The hardware configuration and timings are
shown in Figure 6-6.

INTERRUPTS | 147

Discussion

This is our largest program thus far. Five distinct sections are the interrupt vector locations, the

main program, and the three interrupt service routines. All vector locations contain LJMP

instructions to the respective routines. The main program, starting at code address 0030H,

contains only four instructions. SETB IT0 configures the door sensing interrupt input as

negative-edge triggered. MOV TMOD,#11H configures both timers for mode 1, 16-bit timer

mode. Only the external 0 interrupt is enabled initially (MOV IE,#81H), so a "door-open"

condition is needed before any interrupt is accepted. Finally, SJMP $ puts the main program in

a do-nothing loop.

When a door-open condition is sensed (by a high-to-low transition of INT0), an

external 0 interrupt is generated, EX0ISR begins by putting the constant 20 in R7 (see

below), then sets the overflow flags for both timers to force timer interrupts to occur.

Timer interrupts will only occur, however, if the respective bits are enabled in the IE
register. The next two instructions (SETB ET0 and SETB ET1) enable timer interrupts. Finally,

EX0ISR terminates with a RETI to the main program.

Timer 0 creates the 1 second timeout, and Timer 1 creates the 400 Hz tone. After

EX0ISR returns to the main program, timer interrupts are immediately generated (and

accepted after one execution of SJMP $). Because of the fixed polling sequence (see

Figure 6-2), the Timer 0 interrupt is serviced first. A 1 second timeout is created by pro-

gramming 20 repetitions of a 50,000 s timeout. R7 serves as the counter. Nineteen

times out of 20, T0ISR operates as follows. First, Timer 0 is turned off and R7 is decre-

mented. Then, TH0/TL is reloaded with -50,000, the timer is turned back on, and the

interrupt is terminated. On the 20th Timer 0 interrupt, R7 is decremented to 0 (1 second

has elapsed). Both timer interrupts are disabled (CLR ET0, CLR ET1) and the interrupt

is terminated. No further timer interrupts will be generated until the next "door-open"

condition is sensed.

148 | CHAPTER 6

FIGURE 6-7

Sampling of interrupts on S5P2

The 400 Hz tone is programmed using Timer 1 interrupts, 400 Hz requires a period of
1/400 = 2,500 µs or 1,250 high-time and 1,25 µs low-time. Each timer 1 ISR simply puts —
1250 in TH1/TL1, complements the port bit driving the loudspeaker, then terminates.

6.8 INTERRUPT TIMINGS

Interrupts are sampled and latched on S5P2 of each machine cycle. (See Figure 6-7.) They
are polled on the next machine cycle, and if an interrupt condition exists, it is accepted if
(a) no other interrupt of equal or higher priority is in progress, (b) the polling cycle is the
last cycle in an instruction, and (c) the current instruction is not a RETI or any access to
IE or IP. During the next two cycles, the processor pushes the PC on the stack and loads
the PC with the interrupt vector address. The ISR begins.

The stipulation that the current instruction is not RETI ensures that at least one in-
struction executes after each interrupt service routine. The timing is shown in Figure 6-8.

FIGURE 6-8

Polling of interrupts

INTERRUPTS | 149

FIGURE 6-9
Interrupt latency

The time between an interrupt condition occurring and the ISR beginning is called
interrupt latency. Interrupt latency is critical in many control applications. With a 12
MHz crystal, the interrupt latency can be as short as 3.25 µs on the 8051. An 8051 system
that uses one high-priority interrupt will have a worst-case interrupt latency of 9.25 µs (as-
suming the high-priority interrupt is always enabled). This occurs if the interrupt condition
happens just before the RETI of a level 0 ISR that is followed by a multiply instruction
(see Figure 6-9).

SUMMARY

This chapter has presented the major details required to embark on the design of interrupt-
driven systems with the 805I microcontroller. Readers are advised to begin programming
with interrupts in increments. The examples in this chapter serve as a good first contact
with 8051 interrupts.

The 8051 single-board computers usually contain a monitor program in EPROM
residing at the bottom of code memory. If interrupts are not used in the monitor
program, the vector locations probably contain LJMP instructions to an area of CODE
RAM where user applications are loaded for execution and debugging. The
manufacturer's literature will provide the addresses for programmers to use as entry
points for interrupt service routines. Alternatively, users can simply "look" in the
interrupt vector locations, using the monitor program's commands for examining code
memory locations. The content of code memory address 0003H, for example, will
contain the opcode of the first instruction to execute for an external 0 interrupt. If this is
an LJMP opcode (22H: see Appendix B), then the next two addresses (0004H and
0005H) contain the address of the ISR, and so on.

Alternately, users can develop self-contained interrupt applications, as shown in
the examples. The object bytes can be burned into EPROM and installed in the target
system at code address 000EH. When the system is powered up or reset, the applica-
tion begins execution without the need of a monitor program for loading and starting
the application.

150 | CHAPTER 6
FIGURE 6-10

LED interface using interrupts

PROBLEMS

6.1 Modify Example 6.1 to shut off interrupts and terminate if any key is bit on the
terminal.

6.2 Create a 1 kHz square wave on P1.7, using interrupts.
6.3 Create a 7 kHz pulse wave with a 30% duty cycle on P1.6, using interrupts.
6.4 Combine Example 6.1 and Example 6.3 (earlier in the chapter) into one program.
6.5 Modify Example 6.3 to send one character per second. (Hint: use a timer and

output the character in the timer ISR.)
6.6 Modify Example 6.5 to include a "restart" mode. If a high-to-low transition occurs

while the loudspeaker is sounding, restart the timing loop to continue sounding it
for another second. This is illustrated in Figure 6-10.

6.7 Suppose that an external interrupt connected to INT0 and a timer 0 interrupt occur
at the same time, which one would be serviced first? Why?

6.8 By default, when a serial port interrupt and an external interrupt connected to
INT1 occur at the same time, the serial port interrupt would only be serviced by the
8051 after the external interrupt has been serviced. How do you set the 8051 to
service the serial port interrupt first when both interrupts happen at the same time?

6.9 The IE and IP registers have been initialized to the following values:
IE = 10001111

IP = 00001110

Suppose that a timer 0 interrupt, a serial port interrupt, and an external INT1
interrupt all occur at the same time. Which one would be serviced first? Why?

6.10 What is the difference between small ISRs and large ISRs?
6.11 Referring to Figure 6-10, suppose that pin 3.3 is connected to a clock signal, CLK

of frequency 1kHz. Write an interrupt-enabled assembly language program that
will send a HIGH to P1.E (turning on the LED) for about 250 s whenever a
negativegoing-transition (NGT) of the CLK signal is detected at pin 3.3.

Assembly Language
Programming

7.1 INTRODUCTION

This chapter introduces assembly language programming for the 8051 microcontroller.
Assembly language is a computer language lying between the extremes of machine language
and high-level language. Typical high-level languages like Pascal or C use words and
statements that are easily understood by humans, although still a long way from "natural"
language. Machine language is the binary language of computers. A machine language pro-
gram is a series of binary bytes representing instructions the computer can execute.

Assembly language replaces the binary codes of machine language with easy to re-
member "mnemonics" that facilitate programming. For example, an addition instruction
in machine language might be represented by the code "10110011." It might be
represented in assembly language by the mnemonic "ADD." Programming with
mnemonics is obviously preferable to programming with binary codes.

Of course, this is not the whole story. Instructions operate on data, and the location
of the data is specified by various "addressing modes" embedded in the binary code of the
machine language instruction. So, there may be several variations of the ADD instruction,
depending on what is added. The rules for specifying these variations are central to the
theme of assembly language programming.

An assembly language program is not executable by a computer. Once written, the
program must undergo translation to machine language. In the example above, the
mnemonic "ADD" must be translated to the binary code "10110011." Depending on the
complexity of the programming environment, this translation may involve one or more
steps before an executable machine language program results. As a minimum, a program
called an "assembler" is required to translate the instruction mnemonics to machine
language binary codes. A further step may require a "linker" to combine portions of
programs from separate files and to set the address in memory at which the program may
execute. We begin with a few definitions.

151

152 | CHAPTER 7

An assembly language program is a program written using labels, mnemonics, and
so on, in which each statement corresponds to a machine instruction. Assembly language
programs, often called source code or symbolic code, cannot be executed by a computer.

A machine language program is a program containing binary codes that represent
instructions to a computer. Machine language programs, often called object code, are exe-
cutable by a computer.

An assembler is a program that translates an assembly language program into a ma-
chine language program. The machine language program (object code) may be in
"absolute" form or in "relocatable" form. In the latter case, "linking" is required to set the
absolute address for execution.

A linker is a program that combines relocatable object programs (modules) and pro-
duces an absolute object program that is executable by a computer. A linker is sometimes
called a "linker/locator" to reflect its separate functions of combining relocatable modules
(linking) and setting the address for execution (locating).

A segment is a unit of code or data memory. A segment may be relocatable or ab-
solute. A relocatable segment has a name, type, and other attributes that allow the linker to
combine it with other partial segments, if required, and to correctly locate the segment. An
absolute segment has no name and cannot be combined with other segments.

A module contains one or more segments or partial segments. A module has a name
assigned by the user. The module definitions determine the scope of local symbols. An
object file contains one or more modules. A module may be thought of as a "file" in many
instances.

A program consists of a single absolute module, merging all absolute and
relocatable segments from all input modules. A program contains only the binary codes
for instructions (with addresses and data constants) that are understood by a computer.

7.2 ASSEMBLER OPERATION

There are many assembler programs and other support programs available to facilitate the
development of applications for the 8051 microcontroller. Intel's original MCS-51TM

family assembler, ASM51TM, is no longer available commercially. However, it set the
standard to which the others are compared. In this chapter, we focus on assembly language
programming as undertaken using the most common features of ASM51. Although many
features are standardized, some may not be implemented in assemblers from other
companies.

ASM51 is a powerful assembler with all the bells and whistles. It is available on Intel
development systems and on the IBM PC family of microcomputers. Since these "host"
computers contain a CPU chip other than the 8051, ASM51 is called a cross assembler. An
8051 source program may be written on the host computer (using any text editor) and may
be assembled to an object file and listing file (using ASM51), but the program may not be
executed. Since the host system's CPU chip is not an 8051, it does not understand the binary
instructions in the object file. Execution on the host computer requires either hardware e-
mulation or software simulation of the target CPU. A third possibility is to download the
object program to an 8051-based target system for execution. Hardware emulation, software
simulation, downloading, and other development techniques are discussed in Chapter 10.

ASSEMBLY LANGUAGE PROGRAMMING | 153

ASM51 is invoked from the system prompt by

ASM51 source file [assembler controls]

The source file is assembled and any assembler controls specified take effect. (Assembler
controls, which are optional, are discussed later in this chapter.) The assembler receives a
source file as input (e.g., PROGRAM.SRC) and generates an object file
(PROGRAM.OBJ) and listing file (PROGRAM .LST) as output. This is illustrated in
Figure 7-1.

Since most assemblers scan the source program twice in performing the translation
to machine language, they are described as two-pass assemblers. The assembler uses a
location counter as the address of instructions and the values for labels. The action of
each pass is described below.

7.2.1 Pass One

During the first pass, the source file is scanned line-by-line and a symbol table is
built. The location counter defaults to 0 or is set by the ORG (set origin) directive.
As the file is scanned, the location counter is incremented by the length of each
instruction. Define data directives (DBs or DWs) increment the location counter by
the number of bytes defined. Reserve memory directives (DSs) increment the
location counter by the number of bytes reserved.

Each time a label is found at the beginning of a line, it is placed in the symbol table
along with the current value of the location counter. Symbols that are defined using equate
directives (EQUs) are placed in the symbol table along with the "equated" value. The sym-
bol table is saved and then used during pass two.

7.2.2 Pass Two

During pass two, the object and listing files are created. Mnemonics are converted to op-
codes and placed in the output files. Operands are evaluated and placed after the instruction

opcodes. Where symbols appear in the operand field, their values are retrieved from the

FIGURE 7-1

Assembling a source program

154 | CHAPTER 7

FIGURE 7-2
Pseudo code sketch of a two-pass operator

ASSEMBLY LANGUAGE PROGRAMMING | 155

symbol table (created during pass one) and used in calculating the correct data or
addresses for the instructions.

Since two passes are performed, the source program may use "forward references,"
that is, use a symbol before it is defined. This would occur, for example, in branching
ahead in a program.

The object file, if it is absolute, contains only the binary bytes (00H-0FFH) of the
machine language program. A relocatable object file will also contain a symbol table and
other information required for linking and locating. The listing file contains ASCII text
codes (20H-7EH) for both the source program and the hexadecimal bytes in the machine
language program.

A good demonstration of the distinction between an object file and a listing file is to
display each on the host computer's CRT display (using, for example, the TYPE command
on MS-DOS systems). The listing file clearly displays, with each line of output containing
an address, opcode, and perhaps data, followed by the program statement from the source
file. The listing file displays properly because it contains only ASCII text codes. Display-
ing the object file is a problem, however. The output will appear as "garbage," since the
object file contains binary codes of an 8051 machine language program, rather than ASCII
text codes.

In Figure 7-2, a sketch of a two-pass assembler is shown written in a pseudo com-
puter language (similar to Pascal or C) to enhance readability.

7.3 ASSEMBLY LANGUAGE PROGRAM FORMAT

Assembly language programs contain the following:

 Machine instructions
 Assembler directives
 Assembler controls
 Comments

Machine instructions are the familiar mnemonics of executable instructions (e.g.,
ANL). Assembler directives are instructions to the assembler program that define program
structure, symbols, data, constants, and so on (e.g., ORG). Assembler controls set assem-
bler modes and direct assembly flow (e.g., $TITLE). Comments enhance the readability of
programs by explaining the purpose and operation of instruction sequences.

Those lines containing machine instructions or assembler directives must be written
following specific rules understood by the assembler. Each line is divided into "fields"
separated by space or tab characters. The general format for each line is as follows:

[label:] mnemonic [operand] [,operand] [.. .] [;comment]

Only the mnemonic field is mandatory. Many assemblers require the label field, if present,
to begin on the left in column 1, and subsequent fields to be separated by space or tab
characters. With ASM51, the label field needn't begin in column 1 and the mnemonic field
needn't be on the same line as the label field. The operand field must, however, begin on
the same line as the mnemonic field. The fields are described below.

156 | CHAPTER 7

7.3.1 Label Field

A label represents the address of the instruction (or data) that follows. When branching to
this instruction, this label is used in the operand field of the branch or jump instruction
(e.g., SJMP SKIP).

Whereas the term "label" always represents an address, the term "symbol" is more
general. Labels are one type of symbol and are identified by the requirement that they must
terminate with a colon (:). Symbols are assigned values or attributes, using directives such
as EQU, SEGMENT, BIT, DATA, etc. Symbols may be addresses, data constants, names
of segments, or other constructs conceived by the programmer. Symbols do not terminate
with a colon. In the example below, PAR is a symbol and START is a label (which is a
type of symbol).

PAR EQU 500 ;"PAR" IS A SYMBOL WHICH
;REPRESENTS THE VALUE 500

START: MOV A,#0FFH ;"START" IS A LABEL WHICH
;REPRESENTS THE ADDRESS OF
;THE MOV INSTRUCTION

A symbol (or label) must begin with a letter, question mark, or underscore (_); must
be followed by letters, digit, "?", or "_"; and can contain up to 31 characters.

1
Symbols

may use upper- or lowercase characters, but they are treated the same. Reserved words
(mnemonics, operators, predefined symbols, and directives) may not be used.

7.3.2 Mnemonic Field

Instruction mnemonics or assembler directives go into mnemonic field, which follows the
label field. Examples of instruction mnemonics are ADD, MOV, DIV, or INC. Examples
of assembler directives are ORG, EQU, or DB. Assembler directives are described later in
this chapter.

7.3.3 Operand Field

The operand field follows the mnemonic field. This field contains the address or data used by
the instruction. A label may be used to represent the address of the data, or a symbol may be
used to represent a data constant. The possibilities for the operand field are largely dependent
on the operation. Some operations have no operand (e.g., the RET instruction), while others
allow for multiple operands separated by commas. Indeed, the possibilities for the operand
field are numerous, and we shall elaborate on these at length. But first, the comment field.

7.3.4 Comment Field

Remarks to clarify the program go into comment field at the end of each line. Comments
must begin with a semicolon (;). Entire lines may be comment lines by beginning them with

1
The reader is reminded that the rules specified in this chapter apply to Intel's ASM51. Other assemblers may

have different requirements.

ASSEMBLY LANGUAGE PROGRAMMING | 157

a semicolon. Subroutines and large sections of a program generally begin with a comment
block—several lines of comments that explain the general properties of the section of soft-
ware that follows.

7.3.5 Special Assembler Symbols

Special assembler symbols are used for the register-specific addressing modes. These in-
clude A, R0 through R7, DPTR, PC, C, and AB. In addition, a dollar sign ($) can be used
to refer to the current value of the location counter. Some examples follow.

SETB C
INC DPTR
JNB TI,$

The last instruction above makes effective use of ASM51's location counter to avoid using
a label. It could also be written as

HERE: JNB TI,HERE

7.3.6 Indirect Address

For certain instructions, the operand field may specify a register that contains the address
of the data. The commercial "at" sign (@) indicates address indirection and may only be
used with R0, R1, the DPTR, or the PC, depending on the instruction. For example,

ADD A,@R0
MOVC A,@A+PC

The first instruction above retrieves a byte of data from internal RAM at the address spec-
ified in R0. The second instruction retrieves a byte of data from external code memory at
the address formed by adding the contents of the accumulator to the program counter.
Note that the value of the program counter, when the add takes place, is the address of the
instruction following MOVC. For both instructions above, the value retrieved is placed
into the accumulator.

7.3.7 Immediate Data

Instructions using immediate addressing provide data in the operand field that become
part of the instruction. Immediate data are preceded with a pound sign (#). For example,

CONSTANT EQU 100
MOV A,#0FEH
ORL 40H,#CONSTANT

All immediate data operations (except MOV DPTR,#data) require eight bits of data. The
immediate data are evaluated as a 16-bit constant, and then the low-byte is used. All bits in

158 | CHAPTER 7

the high-byte must be the same (00H or 0FFH) or the error message "value will not fit in a
byte" is generated. For example, the following instructions are syntactically correct:

MOV A,#0FF00H
MOV A,#00FFH

But the following two instructions generate error messages:

MOV A,#0FE00H
MOV A,#01FFH

If signed decimal notation is used, constants from -256 to +255 may also be used.
For example, the following two instructions are equivalent (and syntactically correct):

MOV A,#-256
MOV A,#0FF00H

Both instructions above put 00H into accumulator A.

7.3.8 Data Address

Many instructions access memory locations using direct addressing and require an on-chip
data memory address (00H to 7FH) or an SFR address (80H to 0FFH) in the operand field.
Predefined symbols may be used for the SFR addresses. For example,

MOV A,45H
MOV A,SBUF ;SAME AS MOV A,99H

7.3.9 Bit Address

One of the most powerful features of the 8051 is the ability to access individual bits with-
out the need for masking operations on bytes. Instructions accessing bit-addressable loca-
tions must provide a bit address in internal data memory (00H to 7FH) or a bit address in
the SFRs (80H to 0FFH).

There are three ways to specify a bit address in an instruction: (a) explicitly by giv-
ing the address, (b) using the dot operator between the byte address and the bit position,
and (c) using a predefined assembler symbol. Some examples follow.

SETB 0E7H ;EXPLICIT BIT ADDRESS
SETB ACC.7 ;DOT OPERATOR (SAME AS ABOVE)
JNB TI,$;"TI" IS A PRE-DEFINED SYMBOL
JNB 99H,$;(SAME AS ABOVE)

7.3.10 Code Address

A code address is used in the operand field for jump instructions, including relative jumps
(SJMP and conditional jumps), absolute jumps and calls (ACALL, AJMP), and long jumps
and calls (LJMP, LCALL).

ASSEMBLY LANGUAGE PROGRAMMING | 159

The code address is usually given in the form of a label. For example,

HERE:

SJMP HERE

ASM51 will determine the correct code address and insert into the instruction the correct
8-bit signed offset, 11-bit page address, or 16-bit long address, as appropriate.

7.3.11 Generic Jumps and Calls

ASM51 allows programmers to use a generic JMP or CALL mnemonic. "JMP" can be
used instead of SJMP, AJMP or LJMP; and "CALL" can be used instead of ACALL or
LCALL. The assembler converts the generic mnemonic to a "real" instruction following a
few simple rules. The generic mnemonic converts to the short form (for JMP only) if no
forward references are used and the jump destination is within -128 locations, or to the
absolute form if no forward references are used and the instruction following the JMP or
CALL instruction is in the same 2 K block as the destination instruction. If short or
absolute forms cannot be used, the conversion is to the long form.

The conversion is not necessarily the best programming choice. For example, if
branching ahead a few instructions, the generic JMP will always convert to LJMP even
though an SJMP is probably better. Consider the assembled instruction sequence in Figure
7-3 using three generic jumps. The first jump (line 3) assembles as SJMP because the
destination is before the jump (i.e., no forward reference) and the offset is less than -128.
The ORG directive in line 4 creates a gap of 200 locations between the label START and
the second jump, so the conversion on line 5 is to AJMP because the offset is too great for
SJMP. Note also that the address following the second jump (12FEH) and the address of
START (1234H) are within the same 2K page, which, for this instruction sequence, is
bounded by 1000H and 17FFH. This criterion must be met for absolute addressing. The
third jump assembles as LJMP because the destination (FINISH) is not yet defined when

FIGURE 7-3
Use of the generic JMP mnemonic

160 | CHAPTER 7

the jump is assembled (i.e., a forward reference is used). The reader can verify that the con-
version is as stated by examining the object field for each jump instruction. Verify the hexa-
decimal codes with those found in Appendix C for SJMP, AJMP, and LJMP.

7.4 ASSEMBLE-TIME EXPRESSION EVALUATION

Values and constants in the operand field may be expressed three ways: (a) explicitly
(e.g., 0EFH), (b) with a predefined symbol (e.g., ACC), or (c) with an expression (e.g., 2
+ 3). The use of expressions provides a powerful technique for making assembly language
programs more readable and more flexible. When an expression is used, the assembler
calculates a value and inserts it into the instruction.

All expression calculations are performed using 16-bit arithmetic; however, either 8
or 16 bits are inserted into the instruction as needed. For example, the following two in-
structions are the same:

MOV DPTR,#04FFH + 3
MOV DPTR,#0502H ;ENTIRE 16-BIT RESULT USED

If the same expression is used in a "MOV A,#data" instruction, however, the error
message "value will not fit in a byte" is generated by ASM51. An overview of the rules
for evaluating expressions follows.

7.4.1 Number Bases

The base for numeric constants is indicated in the usual way for Intel microprocessors.
Constants must be followed with "B" for binary, "0" or "Q" for octal, "D" or nothing for
decimal, or "H" for hexadecimal. For example, the following instructions are the same:

MOV A,#15

MOV A,#1111B
MOV A,#0FH
MOV A,#17Q
MOV A,#15D

Note that a digit must be the first character for hexadecimal constants in order to differen-
tiate them from labels (i.e., "0A5H" not "A5H").

7.4.2 Character Strings

Strings using one or two characters may be used as operands in expressions. The ASCII
codes are converted to the binary equivalent by the assembler. Character constants are
enclosed in single quotes 0. Some examples follow.

CJNE A,#'Q',AGAIN
SUBB A,#'0' ;CONVERT ASCII DIGIT TO

;BINARY DIGIT
MOV DPTR,#'AB'
MOV DPTR,#4142H ;SAME AS ABOVE

ASSEMBLY LANGUAGE PROGRAMMING | 161

7.4.3 Arithmetic Operators

The arithmetic operators are

+ addition

- subtraction
* multiplication

/ division
MOD modulo (remainder after division)

For example, the following two instructions are the same:

MOV A,10+10H
MOV A,#1AH

The following two instructions are also the same:

MOV A,#25 MOD 7
MOV A,#4

Since the MOD operator could be confused with a symbol, it must be separated from its
operands by at least one space or tab character, or the operands must be enclosed in paren-
theses. The same applies for the other operators composed of letters.

7.4.4 Logical Operators

The logical operators are

OR logical OR
AND logical AND
XOR logical Exclusive OR
NOT logical NOT (complement)

The operation is applied on the corresponding bits in each operand. The operator must be
separated from the operands by space or tab characters. For example, the following two
instructions are the same:

MOV A,#'9' AND 0FH
MOV A,#9

The NOT operator only takes one operand. The following three MOV instructions are the
same:

THREE EQU 3
MINUS_THREE EQU -3

MOV A,#(NOT THREE)+1
MOV A,#MINUS_THREE
MOV A,#11111101B

162 | CHAPTER 7

7.4.5 Special Operators

The special operators are

SHR shift right
SHL shift left
HIGH high-byte
LOW low-byte

() evaluate first

For example, the following two instructions are the same:

MOV A,#8 SHL 1
MOV A,#12H

The following two instructions are also the same:

MOV A,#HIGH 1234H
MOV A,#12H

7.4.6 Relational Operators

When a relational operator is used between two operands, the result is always false
(0000H) or true (0FFFFH). The operators are

E Q = e q u a l s
NE <> not equals
LT < less than
LE <= less than or equal to
GT > greater than
GE >= greater than or equal to

Note that for each operator, two forms are acceptable (e.g., "EQ" or "="). In the following
examples, all relational tests are "true":

MOV A,#5 = 5
MOV A,#5 NE 4
MOV A,#'X' LT 'Z'
MOV A,#'X' >= 'X'
MOV A,#$ > 0

MOV A,#100 GE 50

So, the assembled instructions are all equal to

MOV A,#0FFH

Even though expressions evaluate to 16-bit results (i.e., 0FFFFH), in the examples above
only the low-order eight bits are used, since the instruction is a move byte operation. The
result is not considered too big in this case, because as signed numbers the 16-bit value
0FFFFH and the 8-bit value 0FFH are the same (-1).

ASSEMBLY LANGUAGE PROGRAMMING | 163

7.4.7 Expression Examples

The following are examples of expressions and the values that result:

Expression Result

`B' - `A' 0001H
8/3 0002H
155 MOD 2 0001H
4 * 4 0010H
8 AND 7 0000H
NOT 1 FFFEH
`A' SHL 8 4100H
LOW 65535 00FFH
(8 + 1) * 2 0012H
5 EQ 4 0000H
`A' LT `B' FFFFH
3 <= 3 FFFFH

A practical example that illustrates a common operation for timer initialization follows:
Put -500 into Timer 1 registers TH1 and TL1. In using the HIGH and LOW operators, a
good approach is

VALUE EQU -500
MOV TH1,#HIGH VALUE
MOV TL1,#LOW VALUE

The assembler converts -500 to the corresponding 16-bit value (0FE0CH); then the HIGH
and LOW operators extract the high (0FEH) and low (0CH) bytes, as appropriate for each
MOV instruction.

7.4.8 Operator Precedence

The precedence of expression operators from highest to lowest is

()
HIGH LOW
* / MOD SHL SHR

+ -
EQ NE LT LE GT GE = <> <= >=
NOT
AND
OR XOR

When operators of the same precedence are used, they are evaluated left to right.
Examples:

Expression Value
HIGH(`A' SHL 8) 0041H
HIGH `A' SHL 8 0000H
NOT `A'-1 FFBFH
`A' OR `A'SHL8 4141H

164 | CHAPTER 7

7.5 ASSEMBLER DIRECTIVES

Assembler directives are instructions to the assembler program. They are not assembly
language instructions executable by the target microprocessor. However, they are placed
in the mnemonic field of the program. With the exception of DB and DW, they have no
direct effect on the contents of memory.

ASM51 provides several categories of directives:

 Assembler state control (ORG, END, USING)
 Symbol definition (SEGMENT, EQU, SET, DATA, IDATA, XDATA, BIT, CODE)
 Storage initialization/reservation (DS, DBIT, DB, DW)
 Program linkage (PUBLIC, EXTRN, NAME)
 Segment selection (RSEG, CSEG, DSEG, ISEG, ESEG, XSEG)

Each assembler directive is presented below, ordered by category.

7.5.1 Assembler State Control

7.5.1.1 ORG (Set Origin) The format for the ORG (set origin) directive is

ORG expression

The ORG directive alters the location counter to set a new program origin for statements
that follow. A label is not permitted. Two examples follow.

ORG 100H ;SET LOCATION COUNTER TO 100H
ORG ($ + 1000H) AND 0F000H ;SET TO NEXT 4K BOUNDARY

The ORG directive can be used in any segment type. If the current segment is absolute,
the value will be an absolute address in the current segment. If a relocatable segment is
active, the value of the ORG expression is treated as an offset from the base address of the
current instance of the segment.

7.5.1.2 End The format for the END directive is

END

END should be the last statement in the source file. No label is permitted and nothing be-
yond the END statement is processed by the assembler.

7.5.1.3 Using The format for the USING directive is

USING expression

This directive informs ASM51 of the currently active register bank. Subsequent uses of
the predefined symbolic register addresses AR0 to AR7 will convert to the appropriate
direct address for the active register bank. Consider the following sequence:

USING 3
PUSH AR7

ASSEMBLY LANGUAGE PROGRAMMING | 165

USING 1
PUSH AR7

The first push above assembles to PUSH 1FH (R7 in bank 3), whereas the second push
assembles to PUSH 0FH (R7 in bank 1).

Note that USING does not actually switch register banks; it only informs ASM51 of
the active bank. Executing 8051 instructions is the only way to switch register banks. This
is illustrated by modifying the example above as follows:

MOV PSW,#00001000B ;SELECT REGISTER BANK 3
USING 3

PUSH AR7 ;ASSEMBLE TO PUSH 1FH
MOV PSW,#00001000B ;SELECT REGISTER BANK 1
USING 1
PUSH AR7 ;ASSEMBLE TO PUSH 0FH

7.5.2 Symbol Definition

The symbol definition directives create symbols that represent segments, registers, numbers,
and addresses. None of these directives may be preceded by a label. Symbols defined by these
directives may not have been previously defined and may not be redefined by any means. The
SET directive is the only exception. Symbol definition directives are described below.

7.5.2.1 Segment The format for the SEGMENT directive is shown below.

symbol SEGMENT segment_type

The symbol is the name of a relocatable segment. In the use of segments, ASM51 is more
complex than conventional assemblers, which generally support only "code" and "data"
segment types. However, ASM51 defines additional segment types to accommodate the
diverse memory spaces in the 8051. The following are the defined 8051 segment types
(memory spaces):

 CODE (the code segment)
 XDATA (the external data space)
 DATA (the internal data space accessible by direct addressing, 00H-7FH)
 IDATA (the entire internal data space accessible by indirect addressing, 00H-7FH,

00H-0FFH on the 8052)
 BIT (the bit space; overlapping byte locations 20H-2FH of the internal data

space)

For example, the statement

EPROM SEGMENT CODE

declares the symbol EPROM to be a SEGMENT of type CODE. Note that this statement
simply declares what EPROM is. To actually begin using this segment, the RSEG
directive is used (see below).

166 | CHAPTER 7

7.5.2.2 EQU (Equate) The format for the EQU directive is

Symbol EQU expression

The EQU directive assigns a numeric value to a specified symbol name. The symbol
must be a valid symbol name, and the expression must conform to the rules described
earlier. The following are examples of the EQU directive:

N27 EQU 27 ;SET N27 TO THE VALUE 27
HERE EQU $;SET "HERE" TO THE VALUE

;OF THE LOCATION COUNTER
CR EQU ODH ;SET CR (CARRIAGE RETURN) TO ODH

MESSAGE: DB `This is a message'
LENGTH EQU $ - MESSAGE ;"LENGTH" EQUALS LENGTH OF

"MESSAGE"

7.5.2.3 Other Symbol Definition Directives The SET directive is similar to the
EQU directive except the symbol may be redefined later, using another SET directive.

The DATA, IDATA, XDATA, BIT, and CODE directives assign addresses of the
corresponding segment type to a symbol. These directives are not essential. A similar
effect can be achieved using the EQU directive; if used, however, they evoke powerful
type-checking by ASM51. Consider the following two directives and four instructions:

FLAG1 EQU 05H
FLAG2 BIT 05H

SETB FLAG1
SETB FLAG2
MOV FLAG1,#0
MOV FLAG2,#0

The use of FLAG2 in the last instruction in this sequence will generate a "data segment address
expected" error message from ASM51. Since FLAG2 is defined as a bit address (using the BIT
directive), it can be used in a set bit instruction, but it cannot be used in a move byte instruction.
Hence, the error. Even though FLAG1 represents the same value (05H), it was defined using
EQU and does not have an associated address space. This is not an advantage of EQU, but,
rather, a disadvantage. By properly defining address symbols for use in a specific memory space
(using the directives BIT, DATA, XDATA, etc.), the programmer takes advantage of ASM51's
powerful type-checking and avoids bugs from the misuse of symbols.

7.5.3 Storage Initialization/Reservation

The storage initialization and reservation directives initialize and reserve space in either
word, byte, or bit units. The space reserved starts at the location indicated by the current
value of the location counter in the currently active segment. These directives may be pre-
ceded by a label. The storage initialization/reservation directives are described below.

7.5.3.1 DS (Define Storage) The format for the DS (define storage) directive is

[label:] DS expression

ASSEMBLY LANGUAGE PROGRAMMING | 167

The DS directive reserves space in byte units. It can be used in any segment type
except BIT. The expression must be a valid assemble-time expression with no forward
references and no relocatable or external references. When a DS statement is encountered
in a program, the location counter of the current segment is incremented by the value of
the expression. The sum of the location counter and the specified expression should not
exceed the limitations of the current address space.

The following statements create a 40-byte buffer in the internal data segment:

DSEG AT 30H ;PUT IN DATA SEGMENT (ABSOLUTE, INTERNAL)
LENGTH EQU 40

BUFFER: DS LENGTH ;40 BYTES RESERVED

The label BUFFER represents the address of the first location of reserved memory. For
this example, the buffer begins at address 30H because "AT 30H" is specified with DSEG.
(See 7.5.5.2 Selecting Absolute Segments.) This buffer could be cleared using the
following instruction sequence:

MOV R7,#LENGTH
MOV R0,#BUFFER

LOOP: MOV @R0,#0

DJNZ R7,LOOP
(continue)

To create a 1000-byte buffer in external RAM starting at 4000H, the following directives
could be used:

XSTART EQU 4000H
XLENGTH EQU 1000

XSEG AT XSTART
XBUFFER: DS XLENGTH

This buffer could be cleared with the following instruction sequence:

MOV DPTR,#XBUFFER
LOOP: CLR A

MOVX @DPTR
INC DPTR
MOV A,DPL
CJNE A,#LOW (XBUFFER + XLENGTH + 1),LOOP
MOV A,DPH
CJNE A,#HIGH(XBUFFER + XLENGTH + 1),LOOP

(continue)

This is an excellent example of a powerful use of ASM51's operators and assemble-time
expressions. Since an instruction does not exist to compare the data pointer with an imme-
diate value, the operation must be fabricated from available instructions. Two compares are
required, one each for the high- and low-bytes of the DPTR. Furthermore, the compare-and-
jump-if-not-equal instruction works only with the accumulator or a register, so the data
pointer bytes must be moved into the accumulator before the CJNE instruction. The loop

168 | CHAPTER 7

terminates only when the data pointer has reached BUFFER + LENGTH + 1. (The " +1 " is
needed because the data pointer is incremented after the last MOVX instruction.)

7.5.3.2 DEBIT The format for the DEBIT (define bit) directive is,

[label:] DEBIT expression

The DEBIT directive reserves space in bit units. It can be used only in a BIT segment. The
expression must be a valid assemble-time expression with no forward references. When the
DEBIT statement is encountered in a program, the location counter of the current (BIT)
segment is incremented by the value of the expression. Note that in a BIT segment, the
basic unit of the location counter is bits rather than bytes. The following directives create
three flags in an absolute bit segment:

BSEG ;BIT SEGMENT (ABSOLUTE)
KBFLAG: DEBIT 1 ;KEYBOARD STATUS
PRFLAG: DEBIT 1 ;PRINTER STATUS
DKFLAG: DEBIT 1 ;DISK STATUS

Since an address is not specified with BSEG in the example above, the address of the flags
defined by DEBIT could be determined (if one wishes to do so) by examining the symbol
table in the .LST or .M51 files. (See Figure 7-1 and Figure 7-6.) If the definitions above were
the first use of BSEG, then KBFLAG would be at bit address 00H (bit 0 of byte address 20H;
see Figure 2-6.) If other bits were defined previously using BSEG, then the definitions above
would follow the last bit defined. (See 7.5.5.2. Selecting Absolute Segments.)

7.5.3.3 DB (Define Byte) The format for the DB (define byte) directive is

[label:] DB expression expression][...]

The DB directive initializes code memory with byte values. Since it is used to actually place
data constants in code memory, a CODE segment must be active. The expression list is a se-
ries of one or more byte values (each of which may be an expression) separated by commas.

The DB directive permits character strings (enclosed in single quotes) longer than
two characters as long as they are not part of an expression. Each character in the string is
converted to the corresponding ASCII code. If a label is used, it is assigned the address of
the first byte. For example, the following statements

CSEG AT 0100H
SQUARES: DB 0,1,4,9,16,25 ;SQUARES OF NUMBERS 0-5

MESSAGE: DB 'Login:',0 ;NULL-TERMINATED CHARACTER STRING

when assembled, result in the following hexadecimal memory assignments for external
code memory:

Address Contents
0100 00
0101 01

ASSEMBLY LANGUAGE PROGRAMMING | 169

0102 04
0103 09
0104 10
0105 19
0106 4C
0107 6F
0108 67
0109 69
010A 6E
010B 3A

010C 00

7.5.3.4 DW (Define Word) The format for the DW (define word) directive is

[label:] DW expression [,expression][...]

The DW directive is the same as the DB directive except two memory locations (16 bits)
are assigned for each data item. For example, the statements

CSEG AT 200H
DW $,`A',1234H,2,`BC'

result in the following hexadecimal memory assignments:

Address Contents
0200 02
0201 00
0202 00
0203 41
0204 12
0205 34
0206 00
0207 02
0208 42
0209 43

7.5.4 Program Linkage

Program linkage directives allow the separately assembled modules (files) to communicate by
permitting intermodule references and the naming of modules. In the following discussion, a
"module" can be considered a "file." (In fact, a module may encompass more than one file.)

7.5.4.1 Public The format for the PUBLIC (public symbol) directive is

PUBLIC symbol [,symbol] [...]

The PUBLIC directive allows the list of specified symbols to be known and used outside
the currently assembled module. A symbol declared PUBLIC must be defined in the

170 | CHAPTER 7

current module. Declaring it PUBLIC allows it to be referenced in another module. For
example,

PUBLIC INCHAR, OUTCHR, INLINE, OUTSTR

7.5.4.2 Extrn The format for the EXTRN (external symbol) directive is

EXTRN segment_type(symbol [,symbol] [...], ...)

The EXTRN directive lists symbols to be referenced in the current module that are defined
in other modules. The list of external symbols must have a segment type associated with
each symbol in the list. (The segment types are CODE, XDATA, DATA, IDATA, BIT,
and NUMBER. NUMBER is a type-less symbol defined by EQU.) The segment type
indicates the way a symbol may be used. The information is important at link-time to
ensure symbols are used properly in different modules.

The PUBLIC and EXTRN directives work together. Consider the two files shown in
Figure 7-4, MAIN.SRC and MESSAGES.SRC. The subroutines HELLO and GOODBYE
are defined in the module MESSAGES but are made available to other modules using the
PUBLIC directive. The subroutines are called in the module MAIN even though they are
not defined there. The EXTRN directive declares that these symbols are defined in another
module.

FIGURE 7-4
Use of the EXTRN and PUBLIC assembler directives

ASSEMBLY LANGUAGE PROGRAMMING | 171

Neither MAIN.SRC nor MESSAGE.SRC is a complete program; they must be as-
sembled separately and linked together to form an executable program. During linking,
the external references are resolved with correct addresses inserted as the destination for
the CALL instructions.

7.5.4.3 Name The format for the NAME directive is

NAME module_name

All the usual rules for symbol names apply to module names. If a name is not provided,
the module takes on the file name (without a drive or subdirectory specifier and without
an extension). In the absence of any use of the NAME directive, a program will contain
one module for each file. The concept of "modules," therefore, is somewhat cumber-
some, at least for relatively small programming problems. Even programs of moderate
size (encompassing, for example, several files complete with relocatable segments)
needn't use the NAME directive and needn't pay any special attention to the concept of
"modules." For this reason, it was mentioned in the definition that a module may be
considered a "file," to simplify learning ASM51. However, for very large programs
(several thousand lines of code, or more), it makes sense to partition the problem into
modules, where, for example, each module may encompass several files containing
routines having a common purpose.

7.5.5 Segment Selection Directives

When the assembler encounters a segment selection directive, it diverts the following
code or data into the selected segment until another segment is selected by a segment
selection directive. The directive may select a previously defined relocatable segment or
optionally create and select absolute segments.

7.5.5.1 RSEG (Relocatable Segment) The format for the RSEG (relocatable
segment) directive is

RSEG segment_name

where "segment_name" is the name of a relocatable segment previously defined with the
SEGMENT directive. RSEG is a "segment selection" directive that diverts subsequent
code or data into the named segment until another segment selection directive is en-
countered.

7.5.5.2 Selecting Absolute Segments RSEG selects a relocatable segment. An
"absolute" segment, on the other hand, is selected using one of the following directives:

CSEG (AT address)
DSEG (AT address)
ISEG (AT address)
BSEG (AT address)
XSEG (AT address)

172 | CHAPTER 7

These directives select an absolute segment within the code, internal data, indirect internal
data, bit, or external data address spaces, respectively. If an absolute address is provided
(by indicating "AT address"), the assembler terminates the last absolute address segment,
if any, of the specified segment type and creates a new absolute segment starting at that
address. If an absolute address is not specified, the last absolute segment of the specified
type is continued. If no absolute segment of this type was previously selected and the ab-
solute address is omitted, a new segment is created starting at location 0. Forward refer-
ences are not allowed and start addresses must be absolute.

Each segment has its own location counter, which is always set to 0 initially. The de-
fault segment is an absolute code segment; therefore, the initial state of the assembler is
location 0000H in the absolute code segment. When another segment is chosen for the first
time, the location counter of the former segment retains the last active value. When that for-
mer segment is reselected, the location counter picks up at the last active value. The ORG
directive may be used to change the location counter within the currently selected segment.
Figure 7-5 shows examples of defining and initiating relocatable and absolute segments.

The first two lines in Figure 7-5 declare the symbols ONCHIP and EPROM to be seg-
ments of type DATA (internal data RAM) and CODE, respectively. Line 4 begins an absolute
bit segment starting at bit address 70H (bit 0 of byte address 2EH; see Figure 2-6). Next,
FLAG1 and FLAG2 are created as labels corresponding to bit-addressable locations 70H and
71H. RSEG in line 8 begins the relocatable ONCHIP segment for internal data RAM. TOTAL
and COUNT are labels corresponding to byte locations. SUM16 is a label corresponding to a
word (two-byte) location. The next occurrence of RSEG in line 13 begins the relocatable
EPROM segment for code memory. The label BEGIN is the address of the first

FIGURE 7-5

Defining and initiating absolute and relocatable segments

ASSEMBLY LANGUAGE PROGRAMMING | 173

instruction in this instance of the EPROM. Note that it is not possible to determine the ad-
dress of the labels TOTAL, COUNT, SUM 16, and BEGIN from Figure 7-5. Since these
labels occur in relocatable segments, the object file must be processed by the
linker/locator (see 7.7 Linker Operation) with starting addresses specified for the ONCHIP
and EPROM segments. The .M51 listing file created by the linker/locator gives the
absolute addresses for these labels. FLAG1 and FLAG2, however, always correspond to
bit addresses 70H and 71H because they are defined in an absolute BIT segment.

7.6 ASSEMBLER CONTROLS

Assembler controls establish the format of the listing and object files by regulating the actions
of ASM51. For the most part, assembler controls affect the look of the listing file, without
having any effect on the program itself. They can be entered on the invocation line when a
program is assembled, or they can be placed in the source file. Assembler controls appearing
in the source file must be preceded with a dollar sign and must begin in column 1.

There are two categories of assembler controls: primary and general. Primary controls
can be placed in the invocation line or at the beginning of the source program. Only other
primary controls may precede a primary control. General controls may be placed anywhere
in the source program. Figure 7-6 shows the assembler controls supported by ASM51.

7.7 LINKER OPERATION

In developing large application programs, it is common to divide tasks into subprograms
or modules containing sections of code (usually subroutines) that can be written separately
from the overall program. The term "modular programming" refers to this programming
strategy. Generally, modules are relocatable, meaning they are not intended for a specific
address in the code or data space. A linking and locating program is needed to combine
the modules into one absolute object module that can be executed.

Intel's RL51 is a typical linker/locator. It processes a series of relocatable object
modules as input and creates an executable machine language program (PROGRAM, per-
haps) and a listing file containing a memory map and symbol table (PROGRAM.M51).
This is illustrated in Figure 7-7.

As relocatable modules are combined, all values for external symbols are resolved
with values inserted into the output file. The linker is invoked from the system prompt by

RL51 input_list [TO output_list] [location_controls]

The input_list is a list of relocatable object modules (files) separated by commas.
The output_list is the name of the output absolute object module. If none is supplied, it
defaults to the name of the first input file without any suffix. The location_controls set
start addresses for the named segments.

For example, suppose three modules or files (MAIN.OBJ, MESSAGES.OBJ, and
SUBROUTINES.OBJ) are to be combined into an executable program (EXAMPLE), and
that these modules each contain two relocatable segments, one called EPROM of type CODE,
and the other called ONCHIP of type DATA. Suppose further that the code segment

174 | CHAPTER 7

NAME
PRIMARY/
GENERAL DEFAULT ABBREV. MEANING

DATE(date)

DEBUG

NODEBUG

EJECT
ERRORPRINT(file)

NOERRORPRINT

GEN

GENONLY

INCLUDE(file)

LIST

NOLIST

MACRO(mem_percent)

NOMACRO
MOD51

NOMOD51

P

P

P

G
P

P

G

G

G

G

G

P

P

DATE()

NODEBUG

NODEBUG

not applicable
NOERRORPRINT

NOERRORPRINT

GENONLY

GENONLY

not applicable

LIST

LIST

MACRO(50)

MACRO(50)
MOD51

MOD51

DADB

NODB

EJ
EP

NOEP

GO

NOGE

IC

LI

NOLI

MR

NOMR
MO

NOMO

Places string in header (9 char.
max.)

Outputs debug symbol
information to object file

Symbol information not placed
in object file
Continue listing on next page
Designates a file to receive

error messages in addition
to the listing file (defaults
to console)

Designates that error messages
will be printed in listing file
only

List only the fully expanded
source as if all lines generated
by a macro call were already
in the source file

List only the original source
text in the listing file

Designates a file to be included
as part of the program
Print subsequent lines of

source code in listing file
Do not print subsequent lines

of source code in listing file
Evaluate and expand all macro

calls. Allocate percentage of
free memory for macro
processing

Do not evaluate macro calls
Recognize the 8051-specific

predefined special function
registers

Do not recognize 8051-specific
predefined special function
registers

FIGURE 7-6

Assembler controls supported by ASM51

NAME
PRIMARY/
GENERAL DEFAULT ABBREV. MEANING

OBJECT(file) P OBJECT(source.OBJ) OJ Designates file to receive
object code

NOOBJECT P OBJECT(source.OBJ) NOOJ Designates that no object
file will be created

PAGING P PAGING PI Designates that listing file
be broken into pages and
each will have a header

NOPAGING P PAGING NOPI Designates that listing file will
contain no page breaks

PAGELENGTH(N) P PAGELENGT(60) PL Sets maximum number of lines
in each page of listing file
(range = 10 to 65,536)

PAGE WIDTH(N) P PAGEWIDTH(120) PW Sets maximum number of
characters in each line of
listing file (range = 72 to 132)

PRINT(file) P PRINT(source.LST) PR Designates file to receive
source listing

NOPRINT P PRINT(source.LST) NOPR Designates that no listing
file will be created

SAVE G not applicable SA Stores current control settings
from SAVE stack

RESTORE G not applicable RS Restores control settings from
SAVE stack

REGISTERBANK(rb,...) P REGISTERBANK(0) RB Indicates one or more banks
used in program module

NOREGISTERBANK P REGISTERBANK(0) NORB Indicates that no register banks
are used

SYMBOLS P SYMBOLS SB Creates a formatted table of all
symbols used in program

NOSYMBOLS P SYMBOLS NOSB Designates that no symbol
table is created

TITLE(string) G TITLE() TT Places a string in
allCTubsequent page
headers (max. 60 characters)

WORKFILES(path) P same as source WF Designates alternate path
for temporary workfiles

XREF P NOXREF XR Creates a cross reference
listing of all symbols
used in program

NOXREF P NOXREF NOXR Designates that no cross
reference list is created

FIGURE 7-6
continued

175

176 | CHAPTER 7

FIGURE 7-7

Linker operation

is to be executable at address 4000H and the data segment is to reside starting at address
30H (in internal RAM). The following linker invocation could be used:

RL51 MAIN.OBJ,MESSAGES.OBJ, SUBROUTINES.OBJ TO EXAMPLE & CODE
(EPROM (4000H)) DATA (ONCHIP (30H))

Note that the ampersand character "&" is used as the line continuation character.

If the program begins at the label START, and this is the first instruction in the MAIN
module, then execution begins at address 4000H. If the MAIN module was not linked first,
or if the label START is not at the beginning of MAIN, then the program's entry point can be
determined by examining the symbol table in the listing file EXAMPLE.M51 created by
RL51. By default, EXAMPLE.M51 will contain only the link map. If a symbol table is de-
sired, then each source program must have used the SDEBUG control. (See Figure 7-6.)

7.8 ANNOTATED EXAMPLE: LINKING
RELOCATABLE SEGMENTS AND MODULES

Many of the concepts just introduced are now brought together in an annotated example of
a simple 8051 program. The source code is split over two files and uses symbols declared
as EXTRN or PUBLIC to allow interfile communication. Each file is a module—one
named MAIN, the other named SUBROUTINES. The program uses a relocatable code
segment named EPROM and a relocatable internal data segment named ONCHIP.
Working with multiple files, modules, and segments is essential for large programming
projects. A careful examination of the example that follows will strengthen these core
concepts and prepare the reader to embark on practical 8051-based designs.

Our example is a simple input/output program using the 8051's serial port and a
VDT's keyboard and CRT display. The program does the following:

 Initialize the serial port (once)
 Output the prompt "Enter a command:"

ASSEMBLY LANGUAGE PROGRAMMING | 177

 Input a line from the keyboard, echoing each character as it is received
 Echo back the entire line
 Repeat

Figure 7-8 shows (a) the listing file (ECHO.LST) for the first source file, (b) the list-
ing file (IO.LST) for the second source file, and (c) the listing file (EXAMPLE.M51) cre-
ated by the linker/locator.

7.8.1 ECHO.LST

Figure 7-8a shows the contents of the file ECHO.LST created by ASM51 when the source
file (ECHO.SRC) was assembled. The first several lines in the listing file provide general
information on the programming environment. Among other things, the invocation line is
restated in an expanded form showing the path to the files. Note the use of the assembler
control EP (for ERRORPRINT) on the invocation line. This causes error messages to be
sent to the console as well as the listing file. (See Figure 7-6.)

The original source file is shown under the column heading SOURCE, just to the
right of the column LINE. As evident, ECHO.SRC contains 22 lines. Lines 1 to 4 contain
assembler controls. (See Figure 7-6.) $DEBUG inline 1 instructs ASM51 to place a sym-
bol table in the object file, ECHO.OBJ. This is necessary for hardware emulation or for
the linker/locator to create a symbol table in its listing file. $TITLE defines a string to be
placed at the top of each page of the listing file. $PAGEW1DTH specifies the maximum
width of each line in the listing file. $NOPAGING prevents page breaks (form feeds) from
being inserted into the listing file. Most assembler controls affect the look of the output
listing file. Some trial and error will usually produce the desire output for printing.

The NAME assembler directive in line 6 defines the current file as part of the mod-
ule MAIN. For this example, no further instance of the MAIN module is used; however,
larger projects may include other files also defined as part of the MAIN module. It may
help the reader for the rest of this example to read "file" for the term "module."

Lines 7 and 8 identify the symbols used in the current module but defined elsewhere.
Without these EXTRN directives, ASM51 will generate the message "undefined symbol"
on each line in the source program where one of these symbols is used. The "segment
type" must also be defined for each symbol to ensure its proper use. All of the external
symbols defined in this example are of type CODE.

Symbol definitions come next. Line 10 defines the symbol CR as the carriage return
ASCII code 0DH. Line 11 defines the symbol EPROM as a segment of type CODE. Recall
that the SEGMENT directive defines only what the symbol is—nothing more, nothing less.

The RSEG directive in line 13 begins the relocatable segment named EPROM. Sub
Frequent instructions, data constant definitions, and so on, will be placed in the EPROM
code segment.

The program begins on line 14 at the label MAIN. The first instruction in the program
is a call to the subroutine INIT, which will initialize the 8051's serial port. The assembled
code under the OBJ column contains the correct opcode (12H for LCALL); however, bytes
2 and 3 of the instruction (the address of the subroutine) appear as 0000H followed by the
letter "F." The linker/locator must "fix" this when the program modules are linked together

FIGURE 7-8a

Annotated example: linking relocatable segments and modules. (a) ECHO.LST. (b) IO.LST. (c) EXAMPLE.M51.

178

FIGURE 7-8b

continued

179

FIGURE 7-8c

continued

180

FIGURE 7-8d

continued

181

182 | CHAPTER 7

and addresses are set for the relocatable segments. Note, too, that the address under the
LOC column is also entered as 0000H. Since the EPROM segment is relocatable, it is not
known at assemble-time where the segment will start. All relocatable segments will
display 0000H as the starting address in the listing file.

The rest of the program instructions are on lines 15 to 19. A prompt message is sent
to the VDT by loading the DPTR with a starting address of the prompt and calling the sub-
routine OUTSTR. Since the OUTSTR, INLINE, and OUTLINE subroutines are not de-
fined in ECHO.SRC, one can only guess at their operation from the name of the
subroutine and the comment lines.

The prompt is a null-terminated ASCII string, which is placed in the EPROM code
segment using the DB (define byte) directive on line 21. Since the prompt bytes are con-
stant (i.e., unchanging), it is correct to place them in code memory (even though they are
data bytes). The prompt begins with a carriage return to ensure it displays on a new line.
(In this example, it is assumed the VDT converts CR to CR/LF.)

All the symbols and labels in ECHO.SRC appear in the symbol table at the bottom of
ECHO.LST. Since the EPROM segment is relocatable and the subroutines are external,
the VALUE column is not of much use. The value for the symbol EPROM, however,
gives the length of the segment, which in this case is 24H or 36 bytes.

7.8.2 IO.LST

Figure 7-8b shows the contents of the file IO.LST—the file containing the input/output
subroutines. This module is named SUBROUTINES in line 6. Lines 7 and 8 declare all
subroutine names as PUBLIC symbols. This makes these symbols available to other
modules. Note that all the subroutines are made public even though only four of them
were used in the MAIN module. Perhaps, as the program grows, other modules will be
added that may need these subroutines. So, they are all made public.

Lines 13 to 16 define several symbols. Once again, EPROM is used as the name of
the code segment. Another segment is used in this module. ONCHIP is defined in line 17
as an internal data segment.

The subroutines are each written in turn beginning at line 20. The comment block be-
ginning each is deliberately brief in this example; however, a more detailed description of
a subroutine is usually given. It is useful to provide, for example, entry and exit conditions
for each subroutine.

After the last subroutine, a buffer in internal RAM is created using the ONCHIP seg-
ment. The segment is started using RSEG (line 82), and the buffer is created using the DS
(define storage) directive (line 83). The length of the buffer is assigned to the symbol
LENGTH "equated" at the top of the program (line 14) as 40. The placement in the source
file of the definition of the symbol LENGTH and of the instance of the segment ONCHIP
is largely a matter of taste. Both could also be positioned just before or after the INLINE
subroutine, where they are used.

As with the EPROM segment, ONCHIP is given an initial address of 0000H under the
LOC column at line 83. Again, the actual location of the ONCHIP segment will not be
determined until link-time (see below). The letter "F' appears in numerous locations in
IO.LST. Each line so identified contains an instruction using a symbol whose value cannot

ASSEMBLY LANGUAGE PROGRAMMING | 183

be determined at assemble-time. The zeros placed in the object file at these locations will
be replaced with "absolute" values by the linker/locator.

7.8.3 EXAMPLE.M51

Figure 7-8c shows the contents of the file EXAMPLE.M51 created by the linker/locator
program, RL51. The invocation line is repeated near the top of EXAMPLE.M51 and
should be examined carefully. Here it is again (leaving out the path):

RL51 ECHO.OBJ,IO.OBJ TO EXAMPLE CODE (EPROM (8000H)) & DATA
(ONCHIP (30H))

Following the command, the object modules are listed separated by commas in the order
they are to be linked. Following the input list, the optional control TO EXAMPLE is spec-
ified providing the name for the absolute object module created by RL51. If omitted, the
name of the first file in the input list is used (without any file extension). The listing file,
in this example, automatically takes on the name EXAMPLE.M51. Finally, the locating
controls CODE and DATA specify the names of segments of the associated type and the
absolute address at which the segment is to begin. In this example the EPROM code
segment begins at address 8000H and the ONCHIP data segment begins at byte address
30H in the 8051's internal RAM.

Following the restatement of the invocation line, EXAMPLE.M151 contains a list of
the input modules included by RL51. In this example only two files (ECHO.OBJ and
IO.OBJ) and two modules (MAIN and SUBROUTINES) are listed. If the NAME directive
had not been used in the source files, the module names would be the same as the file names.

The link map appears next. Both the ONCHIP and EPROM segments are identified,
and the starting address and the length (in hexadecimal) are given for each. ONCHIP is
identified as a data segment starting at address 30H and 28H (40) bytes in length. EPROM
is identified as a code segment starting at address 8000H and 67H (103) bytes in length.

Finally, EXAMPLE.M51 contains a symbol table. All symbols (including labels) used
in the program are listed, sorted on a module-by-module basis. All values are "absolute."
Remember that the symbol table in the .M51 file can only be created if the $DEBUG
assembler control is placed at the top of each source file. The INIT subroutine address
(which we noted earlier was absent in ECHO.LST) is identified under the SUBROUTINES
module as 8024H. This address is substituted as the code address in any object module using
the instruction CALL INIT, as noted earlier in the MAIN module. Knowing the absolute
value of labels is important when debugging. When a bug is found, often a temporary
"patch" can be made by modifying the program bytes and re-executing the program. If the
patch fixes the bug, the appropriate change is made to the source program.

7.9 MACROS

For the final topic in this chapter, we return to ASM51. The macro processing facility
(MPL) of ASM51 is a "string replacement" facility. Macros allow frequently used sections
of code to be defined once using a simple mnemonic and used anywhere in the program by

184 | CHAPTER 7

inserting the mnemonic. Programming using macros is a powerful extension of the tech-
niques described thus far. Macros can be defined anywhere in a source program and sub-
sequently used like any other instruction. The syntax for a macro definition is

%*DEFINE (call_pattern) (macro_body)

Once defined, the call pattern is like a mnemonic; it may be used like any assembly
language instruction by placing it in the mnemonic field of a program. Macros are made
distinct from "real" instructions by preceding them with a percent sign, "%". When the
source program is assembled, everything within the macro-body, on a character-by-
character basis, is substituted for the call-pattern. The mystique of macros is largely un-
founded. They provide a simple means for replacing cumbersome instruction patterns with
primitive, easy-to-remember mnemonics. The substitution, we reiterate, is on a character-
by-character basis-nothing more, nothing less.

For example, if the following macro definition appears at the beginning of a source file,

%*DEFINE (PUSH_DPTR)
(PUSH DPH
PUSH DPL
)

then the statement

%PUSHDPTR

will appear in the .LST file as

PUSH DPH
PUSH DPL

The example above is a typical macro. Since the 8051 stack instructions operate
only on direct addresses, pushing the data pointer requires two PUSH instructions. A
similar macro can be created to POP the data pointer.

There are several distinct advantages in using macros:

 A source program using macros is more readable, since the macro mnemonic is
generally more indicative of the intended operation than the equivalent assembler
instructions.

 The source program is shorter and requires less typing.
 Using macros reduces bugs.
 Using macros frees the programmer from dealing with low-level details.

The last two points above are related. Once a macro is written and debugged, it is used freely
without the worry of bugs. In the PUSH_DPTR example above, if PUSH and POP instruc-
tions are used rather than push and pop macros, the programmer may inadvertently reverse
the order of the pushes or pops. (Was it the high-byte or low-byte that was pushed first?) This
would create a bug. Using macros, however, the details are worked out once—when the
macro is written—and the macro is used freely thereafter, without the worry of bugs.

Since the replacement is on a character-by-character basis, the macro definition
should be carefully constructed with carriage returns, tabs, etc., to ensure proper alignment

ASSEMBLY LANGUAGE PROGRAMMING | 185

of the macro statements with the rest of the assembly language program. Some trial and
error is required.

There are advanced features of ASM51's macro-processing facility that allow for
parameter passing, local labels, repeat operations, assembly flow control, and so on. These
are discussed below.

7.9.1 Parameter Passing

A macro with parameters passed from the main program has the following modified

format:

%*DEFINE (macro_name (parameter_list)) (macro_body)

For example, if the following macro is defined,

%*DEFINE (CMPA# (VALUE))
(CINE A,#%VALUE,$ + 3
)

then the macro call

%CPA# (20H)

will expand to the following instruction in the .LST file:

CJNE A,#20H,$ + 3

Although the 8051 does not have a "compare accumulator" instruction, one is easily cre-
ated using the CJNE instruction with "$ +3" (the next instruction) as the destination for the
conditional jump. The CMPA# mnemonic may be easier to remember for many program-
mers. Besides, use of the macro unburdens the programmer from remembering notational
details, such as " $ +3."

Let's develop another example. It would be nice if the 8051 had instructions such as

JUMP IF ACCUMULATOR GREATER THAN X
JUMP IF ACCUMULATOR GREATER THAN OR EQUAL TO X
JUMP IF ACCUMULATOR LESS THAN X

JUMP IF ACCUMULATOR LESS THAN OR EQUAL TO X

but it does not. These operations can be created using CJNE followed by JC or JNC, but the
details are tricky. Suppose, for example, it is desired to jump to the label GREATER_THAN
if the accumulator contains an ASCII code greater than "Z" (5AH). The following instruction
sequence would work:

CJNE A,#5BH,$+3
JNC GREATER_THAN

The CJNE instruction subtracts 5BH (i.e., "Z" + 1) from the content of A and sets or clears
the carry flag accordingly. CJNE leaves C = 1 for accumulator values 00H up to and
including 5AH. (Note: 5AH - 5BH < 0, therefore C = 1; but 5BH - 5BH = 0,

186 | CHAPTER 7

therefore C = 0.) Jumping to GREATER_THAN on the condition "not carry" correctly
jumps for accumulator values 5BH, 5CH, 5DH, and so on, up to FFH. Once details such
as these are worked out, they can be simplified by inventing an appropriate mnemonic,
defining a macro, and using the macro instead of the corresponding instruction sequence.
Here's the definition for a "jumps if greater than" macro:

%*DEFINE (JGT(VALUE, LABEL))
(CJNE A,#%VALUE+1,$+3 ;JGT
JNC %LABEL
)

To test if the accumulator contains an ASCII code greater than "Z," as just discussed, the
macro would be called as

%JGT ('Z',GREATER_THAN)

ASM5 1 would expand this into

CJNE A,#5BH,$+3 ;JGT
JNC GREATER_THAN

The JGT macro is an excellent example of a relevant and powerful use of macros. By us-
ing macros, the programmer benefits by using a meaningful mnemonic and avoiding
messy and potentially bug-ridden details.

7.9.2 Local Labels

Local labels may be used within a macro using the following format:

%*DEFINE(macro_name [(parameter_list)])
[LOCAL list_of_local_labels] (macro_body)

For example, the following macro definition

%*DEFINE (DEC_DPTR) LOCAL SKIP
(DEC DPL ;DECREMENT DATA POINTER
MOV A,DPL

CJNE A,#0FFH,%SKIP
DEC DPH

%SKIP:

would be called as

%DECDPTR

and would be expanded by ASM51 into

DEC DPL ;DECREMENT DATA POINTER
MOV A,DPL
CJNE A, #0FFH, SKIP00
DEC DPH

SKIP00

ASSEMBLY LANGUAGE PROGRAMMING | 187

Note that a local label generally will not conflict with the same label used elsewhere in the
source program, since ASM51 appends a numeric code to the local label when the macro
is expanded. Furthermore, the next use of the same local label receives the next numeric
code, and so on.

The macro above has a potential "side effect." The accumulator is used as a tempo-
rary holding place for DPL. If the macro is used within a section of code that uses A for
another purpose, the value in A would be lost. This side effect probably represents a bug
in the program. The macro definition could guard against this by saving A on the stack.
Here's an alternate definition for the DEC_DPTR macro:

%*DEFINE (DEC_DPTR) LOCAL SKIP
(PUSHACC

DEC DPL ;DECREMENT DATA POINTER
MOV A,DPL

CJNE A,#0FFH,%SKIP
DEC DPH

%SKIP: POP ACC

)

7.9.3 Repeat Operations

This is one of several built-in (predefined) macros. The format is

%REPEAT (expression) (text)

For example, to fill a block of memory with 100 NOP instructions,

%REPEAT
(100) (NOP

)

7.9.4 Control Flow Operations

The conditional assembly of sections of code is provided by ASM51's control flow macro
definition. The format is

%IF(expression) THEN (balanced_text)
[ELSE (balanced_text)]FI

For example,

INTERNAL EQU 1 ;1 = 8051 SERIAL I/O DRIVERS
;0 = 8251 SERIAL I/O DRIVERS

.

.
%IF (INTERNAL) THEN

(INCHED: . ;8051 DRIVERS

OUTCHR:

188 | CHAPTER 7

)ELSE
(INCHED: ;8251 DRIVERS

OUTCHR:

In this example, the symbol INTERNAL is given the value 1 to select I/O subroutines
for the 8051's serial port, or the value 0 to select I/O subroutines for an external UART,
in this case the 8251. The IF macro causes ASM51 to assemble one set of drivers and
skip over the other. Elsewhere in the program, the INCHAR and BUTCHER
subroutines are used without consideration for the particular hardware configuration.
As long as the program as assembled with the correct value for INTERNAL, the correct
subroutine is executed.

SUMMARY

This chapter has presented major concepts of assembly language programming the 8051,
including standard program formats and the use of assembler directives and macros to help
make a program more readable, compact, and orderly.

As program sizes increase, one wonders if there are other ways to write 8051 pro-
grams in a more structured and English-like manner. In the next chapter, we will discuss
such an alternative, the 8051 C language.

PROBLEMS

7.1 Recast the following instructions with the operand expressed in binary.

MOV A,#255

MOV A,#11Q

MOV A,#11Q

MOV A,#'A'

7.2 Recast each of the following instructions with the operand expressed in hexadecimal.

MOV A,#255

MOV A,#-3

MOV A,#'z'

MOV A,#'33Q

MOV A,#'$'

MOV A,#64

7.3 What is wrong with the coding of the following instruction?

ORL 80H,#F0H

ASSEMBLY LANGUAGE PROGRAMMING | 189

7.4 Identify the error in the following symbols.

?byte.bit

@GOOD_bye

1ST_FLAG

MY_PROGRAM

7.5 Recast the following instructions with the expression evaluated as a 16-bit hexa-
decimal constant.

MOV DPTR, # 'C' EQ 48

MOV DPTR,# HIGH'AB'

MOV DPTR,#-1

MOV DPTR,#NOT (257 MOD 256)

7.6 Recast each of the following instructions with the source location specified as a
hexadecimal address, rather than in symbolic form.

MOV A, PSW

MOV A, P0

MOV A, DPH

MOV A, TLC

MOV A, IP

MOV A, TMOD

7.7 Recast each of the following instructions with the source location specified in sym-
bolic form, rather than as a hexadecimal address.

MOV A,0B0H

MOV A,99H

MOV A,82H

MOV A,85H

MOV A,0A8H

MOV A,0D0H

7.8 What are the "segment types" defined by ASM51 for the 8051, and what memory
spaces do they represent?

7.9 How could a relocatable segment in external data memory be defined, selected, and
a 100-byte buffer created? (Give the segment the name "OFFCHIP" and give the
buffer the name "BUFFER.")

7.10 A certain application requires five status bits (FLAG1 to FLAGS). How could a 5-
bit buffer be defined in an absolute BIT segment starting at bit address 0811? At
what byte address do these bits reside?

7.11 What are two good reasons for making generous use of the EQU directive in
assembly language programs?

7.12 What is the difference between the DB and DW directives?
7.13 What are the memory assignments for the following assembler directives:

ORG 0FH

DW $ SHL4 4

D5 65535

DW 'C'

190 | CHAPTER 7

7.14 What directive is used to select an absolute code segment?
7.15 A file called "ASCII" contains 33 equate directives, one for each control code:

NUL EQU 0CH ;NULL 5YTE

SOH EQU 01H ;STEDT OF HEADER

US EQU 7FH ;UNIT SEPARATOR

DEL EQU 7FH ;DELETE

How could these definitions be made known in another file—a source program—
without actually inserting the equates into that file?

7.16 In order for a printout of a listing file to look nice, it is desirable to have each
sub-routine begin at the top of a page. How is this accomplished?

7.17 Write the definition for a macro that could be used to fill a block of external data
memory with a data constant. Pass the starting address, length, and data constant to
the macro as parameters.

7.18 Write the definition for the following macros:

JGE-jump to LABEL if accumulator is greater than or equal to VALUE
JLT-jump to LABEL if accumulator is less than VALUE
JGE-jump to LABEL if accumulator is less than or equal to VALUE
JGE-jump to LABEL if accumulator is outside the range LOWER and UPPER

7.19 Write the definition for a macro called CJNE DPTR that will jump to LABEL if
the data pointer does not contain VALUE. Define the macro so that the contents of
all registers and memory locations are left intact.

8051 C Programming

8.1 INTRODUCTION

Throughout the earlier chapters, we have discussed how to communicate with the 8051 by
using the assembly language. In fact, there is another way by which we can talk to the 8051.
This is called 8051 C language, an often-preferred choice when the complexity of a program
increases considerably. This chapter introduces the 8051 C language as an alternative to the
assembly language programming. The choice of which to use is entirely up to you, the
programmer. Factors that commonly influence such a decision are the desired speed, code
size, and ease of programming. Since the intent of this chapter is to present the basics of
programming the 8051 in C, we will assume that the reader is already familiar with con-
ventional C programming, as is often the case due to C's popularity and widespread usage.

8.2 ADVANTAGES AND DISADVANTAGES OF 8051 C

The advantages of programming the 8051 in C as compared to assembly are:

 Offers all the benefits of high-level, structured programming languages such as C,
including the ease of writing subroutines, and others discussed in more detail in
Section 9.2

 Often relieves the programmer of the hardware details that the compiler handles
on behalf of the programmer

 Easier to write, especially for large and complex programs
 Produces more readable program source codes

Nevertheless, 8051 C, being very similar to the conventional C language, also suffers
from the following disadvantages:

191

192 | CHAPTER 8

 Possesses the disadvantages of high-level, structured programming languages, as

mentioned in Section 9.2
 Generally generates larger machine codes
 Programmer has less control and less ability to directly interact with the hardware

To compare between 8051 C and assembly language, consider the solution to Example
4.5, written below in 8051 C language.

sbit portbit = P1^0; /* Use variable portbit to refer to P1.0 */
main()
TMOD = 1;
{
while (1)

{
TH0 = 0xFE;
TL0 = 0xC;
TR0 = 1;
while (TF0 != 1);
TR0 = 0;
TF0 = 0;
portbit = !(P1^0);
}

}

Notice that both the assembly and C language solutions for Example 4.5 require almost the
same number of lines. However, the difference lies in the readability of these programs. The
C version seems more human than assembly, and is hence more readable. This often helps
facilitate the human programmer's efforts to write even very complex programs. The assem-
bly language version is more closely related to the machine code, and though less readable,
often results in more compact machine code. As with this example, the resultant machine
code from the assembly version takes 83 bytes while that of the C version requires 149
bytes, an increase of 79.5%!

The human programmer's choice of either high-level C language or assembly lan-
guage for talking to the 8051, whose language is machine language, presents an
interesting picture, as shown in Figure 8-1.

8.3 8051 C COMPILERS

We saw in Figure 8-1 that a compiler is needed to convert programs written in 8051 C language
into machine language, just as an assembler is needed in the case of programs written in
assembly language. A compiler basically acts just like an assembler, except that it is more com-
plex since the difference between C and machine language is far greater than that between as-
sembly and machine language. Hence the compiler faces a greater task to bridge that difference.

Currently, there exist various 8051 C compilers, which offer almost similar functions.
All our examples and programs have been compiled and tested with Keil's µVision 2 IDE

8051 C PROGRAMMING | 193

FIGURE 8-1

Conversion between human, high-level, assembly, and machine language

by Keil Software,1 an integrated 8051 program development environment that includes its
C51 cross compiler for C (Refer to Appendix H for a guide to using µVision 2 IDE). A
cross compiler is a compiler that normally runs on a platform such as IBM compatible PCs
but is meant to compile programs into codes to be run on other platforms such as the 8051.

8.4 DATA TYPES

8051 C is very much like the conventional C language, except that several extensions and
adaptations have been made to make it suitable for the 8051 programming environment.
The first concern for the 8051 C programmer is the data types. Recall that a data type is
something we use to store data. Readers will be familiar with the basic C data types such
as int, char, and float, which are used to create variables to store integers, characters, or
floating-points. In 8051 C, all the basic C data types are supported, plus a few additional
data types meant to be used specifically with the 8051.

Table 8-1 gives a list of the common data types used in 8051 C. The ones in bold are
the specific 8051 extensions. The data type bit can be used to declare variables that reside
in the 8051's bit-addressable locations (namely byte locations 20H to 2FH or bit locations
00H to 7FH). Obviously, these bit variables can only store bit values of either 0 or 1. As
an example, the following C statement:

bit flag = 0;

declares a bit variable called flag and initializes it to 0.
The data type sbit is somewhat similar to the bit data type, except that it is normally

used to declare 1-bit variables that reside in special function registers (SFRs). For example:

sbit P = 0xD0;

1
Keil Software, Inc., 1501 10a' Street, Suite 110, Plano, TX 75074. Website: http://www.keil.com

http://www.keil.com/

194 | CHAPTER 8

TABLE 8-1
Data types used in 8051 C language

Data Type Bits Bytes Value Range

bit 1 0 to 1
signed char 8 1 -128 to +127
unsigned char 8 1 0 to 255
enum 16 2 -32768 to +32767

signed short 16 2 -32768 to +32767
unsigned short 16 2 0 to 65535
signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535
signed long 32 4 -2,147,483,648 to

+2,147,483,647

unsigned long 32 4 0 to 4,294,967,295
float 32 4 +1.175494E-38 to

+3.402823E+38

sbit 1 0 to 1
sfr 8 1 0 to 255

sfr16 16 2 0 to 65535

declares the sbit variable P and specifies that it refers to bit address 0D0H, which is really
the LSB of the PSW SFR. Notice the difference here in the usage of the assignment ('=')
operator. In the context of sbit declarations, it indicates what address the sbit variable re-
sides in, while in bit declarations, it is used to specify the initial value of the bit variable.

Besides directly assigning a bit address to an sbit variable, we could also use a pre-
viously defined sfr variable as the base address and assign our sbit variable to refer to a
certain bit within that sfr. For example:

sfr PSW = 0xD0;
sbit P = PSW^0;

This declares an sfr variable called PSW that refers to the byte address 0D0H and then uses
it as the base address to refer to its LSB (bit 0). This is then assigned to an sbit variable, P.
For this purpose, the carat symbol (

^
) is used to specify bit position 0 of the PSW.

A third alternative uses a constant byte address as the base address within which a
certain bit is referred. As an illustration, the previous two statements can be replaced with
the following:

sbit P = 0xD0^0;

Meanwhile, the sfr data type is used to declare byte (8-bit) variables that are associ-
ated with SFRs. The statement:

sfr IE = 0xA8;

declares an sfr variable IE that resides at byte address 0A8H. Recall that this address is
where the Interrupt Enable (IE) SFR is located; therefore, the sfr data type is just a means
to enable us to assign names for SFRs so that it is easier to remember.

8051 C PROGRAMMING | 195

The sfr16 data type is very similar to sfr but, while the sfr data type is used for 8-bit
SFRs, sfr16 is used for 16-bit SFRs. For example, the following statement:

sfr16 DPTR = 0x82;

declares a 16-bit variable DPTR whose lower-byte address is at 82H. Checking through
the 8051 architecture, we find that this is the address of the DPL SFR, so again, the sfr16
data type makes it easier for us to refer to the SFRs by name rather than address. There's
just one thing left to mention. When declaring sbit, sfr, or sfr16 variables, remember to
do so outside main, otherwise you will get an error.

In actual fact though, all the SFRs in the 8051, including the individual flag, status, and
control bits in the bit-addressable SFRs have already been declared in an include file, called
reg51.h, which comes packaged with most 8051 C compilers. The contents of reg51.h are
listed in Figure 8-2. By using reg51.h, we can refer for instance to the interrupt enable register
as simply IE rather than having to specify the address A8H, and to the data pointer as DPTR
rather than 82H. All this makes 8051 C programs more human-readable and manageable.

/*-----------------------

REG51.H

Header file for generic 80051 and 80C31 microcontroller.
Copyright (c) 1988-2001 Keil Elektronik GmbH and Keil Software,
Inc.

All rights reserved.*/

/* BYTE Register */
sfr P0 = 0x80;
sfr P1 = 0x90;

sfr P2 = 0xA0;
sfr P3 = 0xB0;
sfr PSW = 0xD0;
sfr ACC = 0xE0;
sfr B = 0xF0;
sfr SP = 0x81;
sfr DPL = 0x82;
sfr DPH = 0x83;
sfr PCON = 0x87;

sfr TCON = 0x88;
sfr TMOD = 0x89;

sfr TL0 = 0x8A;
sfr TL1 = 0x8B;
sfr TH0 = 0x8C;
sfr TH1 = 0x8D;
sfr IE = 0xA8;
sfr IP = 0xB8;
sfr SCON = 0x98;
sfr SBUF = 0x99;

FIGURE 8-2a
Listing of reg51.h

/* BIT Register

/ / PSW */

sbit CY = 0xD7;
sbit AC = 0xD6;

sbit F0 = 0xD5;
sbit RS1 = 0xD4;
sbit RS0 = 0xD3;

sbit OV = 0xD2;

sbit P = OxDO;

/* TCON */

sbit TF1 = 0x8F;

sbit TR1 = 0x8E;

sbit TF0 = 0x8D;

sbit TR0 = 0x8C;

sbit IE1 = 0x8B;

sbit IT1 = 0x8A;

sbit IE0 = 0x89;

sbit IT0 = 0x88;

/* IE */

sbit EA = 0xAF;
sbit ES = 0xAC;

sbit ET1 = 0xAB;

sbit EX1 = 0xAA;

sbit ET0 = 0xA9;

sbit EX0 = 0xA8;

/* IP */
sbit PS = 0xBC;

sbit PT1 = 0xBB;

sbit PX1 = 0xBA;

sbit PT0 = 0xB9;

sbit PX0 = 0xB8;

/* P3 */

sbit RD = 0xB7;

sbit WR = 0xB6;

sbit T1 = 0xB5;
sbit T0 = 0xB4;
sbit INT1 = 0xB3;
sbit INT0 = 0xB2;
sbit TXD = 0xBl;
sbit RXD = 0xB0;

/* SCON */
sbit SM0 = 0x9F;
sbit SM1 = 0x9E;
sbit SM2 = 0x9D;
sbit REN = 0x9C;
sbit TB8 = 0x9B;
sbit RB8 = 0x9A;

sbit TI = 0x99;

sbit RI = 0x98;

FIGURE 8-2b

continued
196

8051 C PROGRAMMING | 197

8.5 MEMORY TYPES AND MODELS

The 8051 has various types of memory space, including internal and external code and
data memory. When declaring variables, it is hence reasonable to wonder in which type of
memory those variables would reside. For this purpose, several memory type specifiers are
available for use, as shown in Table 8-2.

The first memory type specifier given in Table 8-2 is code. This is used to specify that
a variable is to reside in code memory, which has a range of up to 64 Kbytes. For example:

char code errormsg [1 = "An error occurred" ;

declares a char array called errormsg that resides in code memory.

If you want to put a variable into data memory, then use either of the remaining five
data memory specifiers in Table 8-2. Though the choice rests on you, bear in mind that
each type of data memory affects the speed of access and the size of available data mem-
ory. For instance, consider the following declarations:

signed int data num1;

bit bdata numbit;
unsigned int xdata num2;

The first statement creates a signed int variable num1 that resides in internal data memory
(00H to 7FH). The next line declares a bit variable numbit that is to reside in the bit-
addressable memory locations (byte addresses 20H to 2FH), also known as bdata. Finally,
the last line declares an unsigned int variable called num2 that resides in external data
memory, xdata. Having a variable located in the directly addressable internal data memory
speeds up access considerably; hence, for programs that are time-critical, the variables
should be of type data. For the 8052 and other variants with internal data memory up to
256 bytes, the idata specifier may be used. Note however that this is slower than data since
it must use indirect addressing. Meanwhile, if you would rather have your variables reside
in external memory, you have the choice of declaring them as pdata or xdata. A variable
declared to be in pdata resides in the first 256 bytes (a page) of external memory, while if
more storage is required, xdata should be used, which allows for accessing up to 64
Kbytes of external data memory.

What if when declaring a variable you forget to explicitly specify what type of mem-
ory it should reside in, or you wish that all variables are assigned a default memory type

TABLE 8-2

Memory types used in 8051 C language

Memory Type Description (Size)

code
data
idata
bdata
xdata
pdata

Code memory (64 Kbytes)
Directly addressable internal data memory (128 bytes)
Indirectly addressable internal data memory (256 bytes)
Bit-addressable internal data memory (16 bytes)
External data memory (64 Kbytes)

Paged external data memory (256 bytes)

198 | CHAPTER 8

TABLE 8-3
Memory models used in 8051 C language

Memory Model Description

Small

Compact

Large

Variables default to the internal data memory (data)

Variables default to the first 256 bytes of external

data memory (pdata)
Variables default to external data memory (xdata)

without having to specify them one by one? In this case, we make use of memory models. Table 8-3

lists the various memory models that you can use.

A program is explicitly selected to be in a certain memory model by using the C di-

rective, #pragma. Otherwise, the default memory model is small. It is recommended that

programs use the small memory model as it allows for the fastest possible access by de-

faulting all variables to reside in internal data memory.

The compact memory model causes all variables to default to the first page of external data

memory while the large memory model causes all variables to default to the full external data

memory range of up to 64 Kbytes.

8.6 ARRAYS

Often, a group of variables used to store data of the same type need to be grouped together

for better readability. For example, the ASCII table for decimal digits would be as in Table

8-4. To store such a table in an 8051 C program, an array could be used. An array is a group

of variables of the same data type, all of which could be accessed by using the name of the

array along with an appropriate index.

The array to store the decimal ASCII table is:

int table([0] =
{0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38, 0x39};

TABLE 8-4
ASCII table for decimal digits

Decimal Digit ASCII Code In Hex

0 30H
1 31H
2 32H
3 33H
4 34H
5 35H
6 36H
7 37H
8 38H
9 39H

8051 C PROGRAMMING | 199

Notice that all the elements of an array are separated by commas. To access an individual
element, an index starting from 0 is used. For instance, table[0] refers to the first
element while table[9] refers to the last element in this ASCII table.

8.7 STRUCTURES

Sometimes it is also desired that variables of different data types but which are related to
each other in some way be grouped together. For example, the name, age, and date of birth
of a person would be stored in different types of variables, but all refer to the person's per-
sonal details. In such a case, a structure can be declared. A structure is a group of related
variables that could be of different data types. Such a structure is declared by:

struct person {

char name[10];

int age;

long DOB;

};

Once such a structure has been declared, it can be used like a data type specifier to create
structure variables that have the member's name, age, and DOB. For example:

struct person grace = {"Grace", 22, 01311980};

would create a structure variable grace to store the name, age, and date of birth of a person
called Grace. Then in order to access the specific members within the per son structure
variable, use the variable name followed by the dot operator (.) and the member name.
Therefore, grace.name, grace.age, grace.DOB would refer to Grace's name, age,
and date of birth, respectively.

8.8 POINTERS

When programming the 8051 in assembly, sometimes registers such as R0, R1, and DPTR
are used to store the addresses of some data in a certain memory location. When data is ac-
cessed via these registers, indirect addressing is used. In this case, we say that R0, R1, or
DPTR are used to point to the data, so they are essentially pointers.

Correspondingly in C, indirect access of data can be done through specially defined
pointer variables. Many students studying C shy away from pointers. In fact, pointers are
simply just special types of variables, but whereas normal variables are used to directly
store data, pointer variables are used to store the addresses of the data. Just bear in mind
that whether you use normal variables or pointer variables, you still get to access the data
in the end. It is just whether you go directly to where it is stored and get the data, as in the
case of normal variables, or first consult a directory to check the location of that data be-
fore going there to get it, as in the case of pointer variables. Figure 8-3 contrasts between
how data is accessed via normal variables and via pointers.

200 | CHAPTER 8

FIGURE 8-3
Different ways of accessing data. (a) Via normal variables (b) Via pointer variables

Declaring a pointer follows the format:

data_type * pointer_name;
where

data_type refers to which type of data that the pointer is pointing to
denotes that this is a pointer variable

pointer_name is the name of the pointer

As an example, the following declarations:

int * numPtr;
int num;
numPtr = #

first declares a pointer variable called numPtr that will be used to point to data of type
int. The second declaration declares a normal variable and is put there for comparison. The
third line assigns the address of the num variable to the numPtr pointer. The address of
any variable can be obtained by using the address operator, &, as is used in this example.
Bear in mind that once assigned, the numPtr pointer contains the address of the num

variable, not the value of its data.
The above example could also be rewritten such that the pointer is straightaway ini-

tialized with an address when it is first declared:

int num;
int * numPtr = #

In order to further illustrate the difference between normal variables and pointer

variables, consider the following, which is not a full C program but simply a fragment to

illustrate our point:

int num = 7;
int * numPtr = #
printf("%d\n", num);

8051 C PROGRAMMING | 201

printf("%d\n", numPtr);
printf("%d\n", #)
printf("%d\n", *numPtr);

The first line declares a normal variable, num, which is initialized to contain the data 7.
Next, a pointer variable, numPtr, is declared, which is initialized to point to the address of
num. The next four lines use the printf () function, which causes some data to be printed
to some display terminal connected to the serial port. The first such line displays the con-
tents of the num variable, which is in this case the value 7. The next displays the contents of
the numPtr pointer, which is really some weird-looking number that is the address of the
num variable. The third such line also displays the address of the num variable because the
address operator is used to obtain num's address. The last line displays the actual data to
which the numPtr pointer is pointing, which is 7. The * symbol is called the indirection
operator, and when used with a pointer, indirectly obtains the data whose address is pointed
to by the pointer. Therefore, the output display on the terminal would show:

7
13452 (or some other weird-looking number)
13452 (or some other weird-looking number)
7

Later, after we have covered Section 8.10, which discusses how to write complete C pro-
grams, you will be able to verify the output for yourself.

8.8.1 A Pointer's Memory Type

Recall that pointers are also variables, so the question arises where they should be stored.
When declaring pointers, we can specify different types of memory areas that these point-
ers should be in, for example:

int * xdata numPtr = #

This is the same as our previous pointer examples. We declare a pointer numPtr, which
points to data of type int stored in the num variable. The difference here is the use of the
memory type specifier xdata after the * . This specifies that the pointer numPtr should re-
side in external data memory (xdata), and we say that the pointer's memory type is xdata.

8.8.2 Typed Pointers

We can go even further when declaring pointers. Consider the example:

int data * xdata numPtr = #

The above statement declares the same pointer numPtr to reside in external data memory
(xdata), and this pointer points to data of type int that is itself stored in the variable num

in internal data memory (data). The memory type specifier, data, before the * specifies
the data memory type while the memory type specifier, xdata, after the * specifies the
pointer memory type.

202 | CHAPTER 8

TABLE 8-5
Data memory type values stored in first byte of untyped pointers

Value Data Memory Type

1 idata
2 xdata
3 pdata
4 data/bdata
5 code

Pointer declarations where the data memory types are explicitly specified are called
typed pointers. Typed pointers have the property that you specify in your code where the
data pointed by pointers should reside. The size of typed pointers depends on the data
memory type and could be of one or two bytes.

8.8.3 Untyped Pointers

When we do not explicitly state the data memory type when declaring pointers, we get
untyped pointers, which are generic pointers that can point to data residing in any type of
memory. Untyped pointers have the advantage that they can be used to point to any data in-
dependent of the type of memory in which the data is stored. All untyped pointers consist of
3 bytes, and are hence larger than typed pointers. Untyped pointers are also generally slower
because the data memory type is not determined or known until the complied program is run
at runtime. The first byte of untyped pointers refers to the data memory type, which is
simply a number according to Table 8-5. The second and third bytes are, respectively, the
higher-order and lower-order bytes of the address being pointed to.

An untyped pointer is declared just like normal C, where:

int * xdata numPtr = #

does not explicitly specify the memory type of the data pointed to by the pointer. In this

case, we are using untyped pointers.

8.9 FUNCTIONS

In programming the 8051 in assembly, we learnt the advantages of using subroutines to
group together common and frequently used instructions. The same concept appears in 8051
C, but instead of calling them subroutines, we call them functions. As in conventional C, a
function must be declared and defined. A function definition includes a list of the number
and types of inputs, and the type of the output (return type), plus a description of the internal
contents, or what is to be done within that function.

The format of typical function definition is as follows:

return_type function_name(arguments) [memory] [reentrant]
[interrupt] [using]

{

}

8051 C PROGRAMMING | 203

where
2

return_type refers to the data type of the return (output) value
function_name is any name that you wish to call the function as
arguments is the list of the type and number of input (argument) values
memory refers to an explicit memory model (small, compact or large)
reentrant refers to whether the function is reentrant (recursive)
interrupt indicates that the function is actually an ISR
Using explicitly specifies which register bank to use

Consider a typical example, a function to calculate the sum of two numbers:

int sum(int a,int b)

{
return a + b;
}

This function is called sum and takes in two arguments, both of type int. The return type is
also int, meaning that the output (return value) would be an int. Within the body of the func-
tion, delimited by braces, we see that the return value is basically the sum of the two ar-
guments. In our example above, we omitted explicitly specifying the options: memory,
reentrant, interrupt, and us ing. This means that the arguments passed to the function would
be using the default small memory model, meaning that they would be stored in internal data
memory. This function is also by default non-recursive and a normal function, not an ISR.
Meanwhile, the default register bank used is bank 0.

8.9.1 Parameter Passing

In 8051 C, parameters are passed to and from functions and used as function arguments
(inputs). Nevertheless, the technical details of where and how these parameters are stored are
transparent to the programmer, who does not need to worry about these
technicalitie2rheowever, we will briefly discuss in this section how parameters are passed in
order to appreciate how the compiler takes care of this on our behalf. In 8051 C, parameters
are passed through the registers or through memory. Passing parameters through registers is
faster and is the default way in which things are done. The registers used and their purpose
are described in more detail in Table 8-6.

TABLE 8-6
Registers used in parameter passing

Number of
Argument

Char/1-Byte
Pointer

INT/2-Byte
Pointer Long/Float

Generic
Pointer

1
2
3

R7
R5
R3

R6 & R7
R4 & R5
R2 & R3

R4--R7
R4-R7

R1-R3

2
The statements delimited by square brackets indicate that they are optional.

204 | CHAPTER 8

TABLE 8-7

Registers used in returning values from functions

Return Type Register Description

Bit
char/unsigned char/1-byte pointer
int/unsigned int/2-byte pointer
long/unsigned long
float
generic pointer

Carry Flag (C)
R7
R6&R7
R4-R7
R4-R7
R1-R3

MSB in R6, LSB in R7 MSB
in R4, LSB in R7 32-bit IEEE
format Memory type in
R3,MSB in R2, LSB in R1

Since there are only eight registers in the 8051, there may be situations where we do
not have enough registers for parameter passing. When this happens, the remaining param-
eters can be passed through fixed memory locations. To specify that all parameters will be
passed via memory, the NOREGPARMs control directive is used. To specify the reverse,
use the REGPARMs control directive.

8.9.2 Return Values

Unlike parameters, which can be passed by using either registers or memory locations,
output values must be returned from functions via registers. Table 8-7 shows the registers
used in returning different types of values from functions.

8.10 SOME 8051 C EXAMPLES

We have so far briefly covered the basic concepts of programming the 8051 in C. In this
section, we will look at various examples of how to write such programs. All the 8051 C
programs discussed henceforth have been compiled and tested on Keil's µVision2, which
is an 8051 integrated development environment (IDE) that includes source code editing,
compiling, and debugging.3

8.10.1 The First Program

As is customary in any introductory course on high-level, structured proi,amming languages,
the first demonstrative example is a simple program that displays the message "Hello World,"

#include <REG51.H> /* SFR declarations */
#include <stdio.h> /* Declarations for I/O

functions(eg. printf) */

main ()
{
SCON = 0x52; /* serial port, mode 1 */

TMOD = 0x20; /* timer 1, mode 2 */

3A free evaluation version is available at http://www.keil.com.

http://www.keil.com/

8051 C PROGRAMMING | 205

TH1 = -13; /* reload count for 2400
baud */

TR1 = 1; /* start timer 1 */

while (1) /* repeat forever */
{
printf ("Hello World\n"); /* Display "Hello World" */
}

}

The program above continually displays the message "Hello World" to the device attached
to the serial port, which is by default connected to a simulated serial window. For further
details about interacting with µVision2 IDE, refer to Appendix H or Keil's documentations
in µVision2's Help.

8.10.2 Timers

In Chapter 4, ideas of how to interact with the 8051's built-in timers were discussed. As a
basis of comparison between programming the 8051 in assembly language and in C, we
will give here C solutions for some of the Chapter 4 examples.

EXAMPLE Pulse Wave Generation
8.1 Write a program that creates a periodic waveform on P1.0 with as high a frequency as

possible.

Solution

#include <REGS1.H> /* SFR declarations */

shit portbit = Pl^0; /* Use variable portbit to refer to
Pi.0 */

main 0
{
while (1) /* repeat forever */

{
portbit = 1; /* set P1.0 */
portbit = 0; /* clear P1.0 */
}

}

Discussion

This program is actually the C version for Example 4.2. In the program, port P1.0 needs to
be set and cleared repeatedly. This is done by simply writing a 1 and 0 to it. Since P1 has
already been declared in the REG51.H header file, we can refer to its LSB by declaring an
shit variable and using that in the main program.

There is one thing that we should note when making use of instructions to generate
timing delays and waveforms. In assembly, we could easily do so by taking note of how

206 | CHAPTER 8

many machine cycles it takes to execute a certain instruction. In C, however, it is cannot
be directly determined how long it would take to execute a certain statement, loop, or
functions. All these depend on the specific C compiler used, since different compilers use
different levels of optimization and hence generate different combinations of assembly
language instructions and subsequently machine code.

The best way is to look at the specific assembly language instructions generated by
the compiler for a certain C statement and determine how many machine cycles they would
take. In µVision2 IDE, you can disassemble your C program into assembly language by
viewing the Disassembly Window. Refer to Appendix H or Keil's Help documentation for
more information.

EXAMPLE 10 kHz Square Wave
8.2 Write a program using Timer 0 to create a 10kHz square wave on P1.0.

Solution

#include <REG51.H> /* SRR declarations */
shit portbit = P1^0; /* Use variable portbit to

refer to Pi.H */

main ()

{
TMOD = 2; /* 8-bit auto-reload mode */
TH0 = -50; /* -50 reload value in TH0
TR0 = 1; /* start timer 0 */

while (i) /* repeat forever */

{
while (TF0 != 1); /* wait for overflow */
TF0 = 0; /* clear timer overflow flag */
portbit = !(portbit); /* toggle Pi.0 */
}

}

Discussion

This is really the C version for Example 4.4. For an infinite loop, the while statement is
used, with its condition a constant value of 1. In C, 1 denotes TRUE whereas a 0 denotes
FALSE. Hence, in this case the condition would always be true, causing the while
statement to be repeated indefinitely.

EXAMPLE 1 kHz Square Wave
8.3 Write a program using Timer 0 to create a 1 kHz square wave on P1.0.

Solution

#include <REGS1.H> /* SFR declarations */
sbit portbit = P1^0; /* Use variable portbit to

refer to Pi.0 */

8051 C PROGRAMMING | 207

main ()

{
TMOD = 1; /* 16-bit timer mode */
while (1) /* repeat forever */

{
TH0 = 0xFE; /* -500 (high byte)
TL0 = 0x0C; /* -500 (low byte)
TR0 = 1; /* start timer 0 */
while (TH0 != 1); /* wait for overflow */
TR0 = 0; /* stop timer 0 */
TF0 = 0; /* clear timer overflow flag */
portbit = =(portbit); /* toggle Pi.0 */

}
}

Discussion

This is the C version for Example 4.5 and is very similar to the previous example.

EXAMPLE Buzzer Interface
8.4 A buzzer is connected to P1.7, and a debounced switch is connected to P1.6. Write a pro-

gram that reads the logic level provided by the switch and sounds the buzzer for 1 second
for each 1-to-0 transition detected.

Solution

#include <REG51.H> /* SFR declarations */

int hundred = 100;

sbit inbit = P1^6; /* Use variable inbit to refer to
P1.6 */

sbit outbit = P1^7; /* Use variable outbit to refer to
Pi.7 */

unsigned char R7; /* use 8-bit variable to represent
R7 */

void delay(void); /* Function prototype */
main ()

{
TMOD = 1; /* use timer 0 in mode 1 */
while (1) /* repeat forever */

{
while (inbit!=1); /* wait for 1 input*/
while (inbit==1); /* wait for 0 input*/
outbit = 1; /* turn buzzer on */
delay(); /* wait for 1 second */
outbit = 0; /* turn buzzer off */
}

}

208 | CHAPTER 8

void delay(void)

{
R7 = hundred;
do

{
TH0 = 0xD8; /* -10000 (high byte) */
TL0= 0xF0; /* -10000 (low byte) */
TR0 = 1;
while (TF0 != 1);
TF0 = 0;
TR0 = 0;
R7 -= 1;

while (R7!=0);
}

Discussion

This example uses a function called delay() together with the main function. Since the
function is defined after main, a on-line function prototype should be added prior to main
to allow the compiler to know that such a function exists. R7 is also not defined in the
REG51.H header file, so it is defined here before being used in the delay() function. This
is done to maintain direct correspondence to the assembly language solution of this ex-
ample problem in Example 4.7. In reality when one programs in C, rather than using the
general purpose registers R0 to R7, one would simply declare variables instead. This is
also because the registers R0 to R7 are used by the compiler for parameter passing to and
from functions.

8.10.3 Serial Port

In this section, we will give example solutions to the examples previously discussed in
Chapter 5 concerning the 8051 serial port.

EXAMPLE Initializing the Serial Port
8.5 Write an instruction sequence to initialize the serial port to operate as an 8-bit UART at

2400 baud. Use Timer 1 to provide the baud rate clock.

Solution

#include <REG51> /* SFR declarations */

main ()
{

SCON = 0x52; /* serial port, mode 1 */
TMOD = 0x20; /* timer 1, mode 2 */
TH1 = -13; /* reload count for 2400 baud */
TR1 = 1; /* start timer 1 */
}

8051 C PROGRAMMING | 209

EXAMPLE Output Character Subroutine
8.6 Write a function called OUTCHR to transmit the 7-bit ASCII code in the accumulator out

the 8051 serial port, with odd parity added as the 8th bit. Return from the function with the
accumulator intact.

Solution

#include <REG51.H> /* SFR declarations */

shit AccMSB = ACC^ 7; /* Use variable AccMSE to refer to
ACC.7 */

void OUTCHR(void)
{
CY = P; /* put parity hit in C flag */
CY = !CY; /* change to odd parity */
AccMSB = CY; /* add to character code */
while (TI != 1); /* Tx empty? no: check again */
TI = 0; /* yes: clear flag and */
SEUF = ACC; /* send character */
AccMSB = 0; /* strip off parity hit */

}

Discussion

In the program, the MSB of the accumulator, ACC needs to be accessed so an shit
variable, AccMSE, is declared that refers to this MSB.

EXAMPLE Input Character Subroutine
8.7 Write a function called INCHAR to input a character from the 8051's serial port and return

with the 7-bit ASCII code in the accumulator. Expect odd parity in the eighth bit received
and set the carry flag if there is a parity error.

Solution

#include <REG51.H> /* SFR declarations */
sbit AccMSB = ACC^7; /* Use variable AccMSB to refer to

ACC.7 */

void INCHAR(void)

{
while (RI != 1); /* wait for character */
RI = 0; /* clear flag */
ACC = SBUF; /* read char into accumulator */
CY = P; /* for odd parity in accumulator, P

should he set */
CY = !CY; /* complementing correctly indicates ii

"error" */
AccMSB = 0; /* strip off parity */

}

210 | CHAPTER 8

8.10.4 Interrupts

From our discussion of functions in Section 8.9, we know that interrupt service routines
(ISRs) are written in very much the same way as normal functions, with the exception that
the "interrupt" statement is used in the function definition. We will now show how the exam-
ples from Chapter 6 on interrupts can be solved with programs written in 8051 C.

EXAMPLE Square Wave Using Timer Interrupts
8.8 Write a program using Timer 0 and interrupts to create a 10 kHz square wave on P1.0.

Solution

#include <REG51.H> /* SFR declarations */

sbit portbit = P1^0; /* Use variable portbit to refer
to P1.0 */

main ()

{
TMOD = 0x02; /* timer 0, mode 2 */

TH0 = -50; /* 50 ps delay */
TR0 = 1; /* start timer */
IE = 0x82; /* enable timer 0 interrupt */

while(1); /* repeat forever */

}

void T0ISR(void) interrupt 1
{
portbit = !portbit; /* toggle port hit Pi.0 */
}

Discussion

This program introduces the use of an interrupt function, a special type of function that is
automatic whenever the corresponding interrupt occurs. Note that the interrupt statement is
followed by an interrupt number, in this case, 1, which refers to a timer/counter 0 interrupt.
Table 8-8 gives a list of the various interrupt numbers, types, and vector addresses.

EXAMPLE Two Square Waves Using Timer Interrupts
8.9 Write a program using interrupts to simultaneously create kHz and 500Hz square waves

on P1.7 and P1.6.

Solution

#include <REG51.H> /* SFR declarations */

sbit portsev = P1^7; /* Use variable portsev to refer to
P1.7 */

sbit portsix = P1^6; /* Use varibhle portsix to refer to
P1.6 */

8051 C PROGRAMMING | 211

TABLE 8-8

Standard 8051 interrupts and interrupt numbers

Interrupt Number Description Vector Address

0 External INT 0 0003H
1 Timer/Counter 0 000BH
2 External INT 1 0013H
3 Timer/Counter 1 0018H
4 Serial Port 0023H

main ()
{
TMOD = 0x12; /* timer 1, mode 1; twhile(i);ode 2 */

TH0 = -71; /* 7kHz using timer 0*/
TR0 = 1; /* start timer */

TF1 = 1; /* force timer 1 interrupt */
IE = 0x8A; /* enable both timer interrupts */
while(1); /* repeat forever */
}

void T0ISR(void) interrupt 1
{
portsev = !portsev; /* toghit Pi.6 bit P1.7 */
}

void T1ISR(void) interrupt 3

{
TR1 = 0;

TH1 = OxFC; /* 1 lms high time & */
TL1 = 0x18; /* low time */
TR1 = 1;

portsix = !portsix; /* toggle port bit P1.6 */
}

Discussion

In this example, two interrupt functions are used to service Timer 0 and Timer 1 interrupts. As

can be seen from Table 8-8, the corresponding interrupt numbers are 1 and 3, respectively.

EXAMPLE Character Output Using Interrupts
8.10 Write a program using interrupts to continually transmit the ASCII code set (excluding control

codes) to a terminal attached to the 8051's serial port.

Solution

#include <REG51.H> /* SFR declarations

*/ main()

{
TMOD = 0x20; /* timer 1, mode 2 */
TH1 = -26; /* 12000 baud reload value */

212 | CHAPTER 8

TR1 = 1; /* start timer */
SCON = 0x42; /* mode 1, set TI to force 18t interrupt */
ACC = 0x20; /* send ASCII space first */
IE = 0x90; /* enahle serial port interrupt */
while(1); /* repeat forever */

}

void SPISR(void) interrupt 4

{
if (ACC == 0x7F) /* if finished ASCII set */

ACC = 0x20; /* reset to space */
SBUF = ACC; /* send char. to serial port */
ACC = ACC + 1; /* increment ASCII code */
TI = 0; /* clear interrupt flag */

}

Discussion

This program uses an interrupt function to service a serial port interrupt request, where the interrupt
number used is 4. Note also that even though there is no restriction on what name you should use
for an interrupt function, the convention is to use explicit names such as SPISR and T0ISR to refer
to these interrupt functions.

EXAMPLE Furnace Controller
8.11 Using interrupts, design an 8051 furnace controller that keeps a building at 20°C ± 1°C.

Solution

#include <REG51.H> /* SFR declarations */

sbit outbit = P1^7; /* Use variahle outbit to refer to
P1.7 */

sbit hotbit = P3^2; /* Use variahle hotbit to refer to P3.2
*/

main ()

{
IE = 0x85; /* enahle external interrupts */
IT0 = 1; /* negative edge triggered */
IT1 = 1;
outbit = 1; /* turn furnace on */
if (hotbit != 1) /* if T > 21 degrees, */

outbit = 0; /* turn it off */
while(1); /* repeat forever

*/

}

void EX0ISR(void) interrupt 0

{
outhit = 0; /* turn furnace off */
}

8051 C PROGRAMMING | 213

void EX0ISR(void) interrupt 2

{
outbit = 1; /* turn furnace on */
}

Discussion

Again, as this example shows, writing interrupt functions to service external interrupts is
similar to writing such functions for timer and serial port interrupts. The difference lies in
the interrupt numbers being used, which can be obtained from Table 8-8. Note again that
the interrupt functions have been explicitly named.

EXAMPLE Intrusion Warning System

8.12 Design an intrusion warning system using interrupts that sounds a 400Hz tone for 1
second (using a loudspeaker connected to P1.7) whenever a door sensor connected to
INT0 makes a high-to-low transition.

Solution

#include <REG51.H> /* SFR declarations */

sbit outhit = P1^7; /* use variahle outhit to refer to P1.7 */
unsigned char R7; /* use 8-bit variahle to represent R7 */

main()

{
IT0 = 1; /* negative edge activated */
TMOD = 0x11; /* 16-bit timer mode */

IE = 0x81; /* enable EXT 0 only */
while(1); /* repeat forever */
}

void T0ISR(void) interrupt 0
{
R7 = 20; /* 20 x 5000 µs = 1 second */

TF0 = 1; /* force timer 0 interrupt */
TF1 = 1; /* force timer 1 interrupt */
ET0 = 1; /* hegin tone for 1 second */
ET1 = 1; /* enahle timer interrupts */

/* timer interrupts will do the work */
}

void EX0ISR(void) interrupt 1

{
TR0 = 0; /* stop timer */
R7 = R7 - 1; /* decrement R7 */

if (R7 == 0) /* if 20th time, */

{
ET0 = 0; /* disahle itself */
ET1 = 0;
}

214 | CHAPTER 8

else

{
TH0 = 0x3C; /* 0.05 sec. delay */
TL0 = 0xB0;

TR0 = 1;

}

}

void T1ISR(void) interrupt 3

{
TR1 = 0;
TH1 = 0xFB; /* count for 400 Hz
*/
TL1 = 0x1E;

outbit = !outbit; /* music maestro! */
TR1 = 1;
}

Discussion
This is a combination of several interrupt functions previously discussed.

SUMMARY

This chapter has introduced the concepts of programming the 8051 in C, in contrast to previous
chapters, which discussed programming the 8051 in assembly language. Nevertheless, whether
it be assembly language or C, both make it possible to write programs, especially complex ones
in an organized manner, the structured way. This will be the topic of the next chapter.

PROBLEMS

8.1 How does the 8051 C language differ from the conventional C language in terms of
data types?

8.2 Suppose you wish to declare a variable to store a bit value at physical bit address
20H. Describe how you would do so in 8051 C.

8.3 What is the use of the carat (^) symbol in terms of bit addressable locations?
8.4 In how many ways can you declare shit variables? Explain each way by giving

an example.
8.5 What is the difference between an SFR and an unsigned char variable?
8.6 Differentiate between the terms "memory types" and "memory models."
8.7 Explain the difference between a function and an interrupt function.
8.8 Explain, by giving an example, what you understand by a pointer.
8.9 Suppose you would like to have most of your program variables residing in external

RAM while a few time-critical variables should reside in the first 128 bytes of in-
ternal RAM. Briefly describe how you could achieve this.

8051 C PROGRAMMING | 215

8.10 Why is it not advisable to use the accumulator, ACC, when programming in C?
8.11 Write a C program having numbers 1 to 10 in code memory, and that copies the odd (respectively

even) numbers to external data memory when P1.0 is set (respectively cleared).
8.12 Write an 8051 C program to continually move a string of ASCII characters stored in internal data

memory at location 30H to external data memory at location 1234H.
8.13 a. Show how you create a lookup table in code memory to store the first 10 values of the

function f (x) = ex+2 corresponding to x = {1, 2, ... , 10}.
b. Next, declare a pointer that is stored in an indirectly accessible internal RAM location and
use that to obtain the value of f(2) and print it out on the screen.

216 | CHAPTER 8

Program Structure and Design

9.1 INTRODUCTION

What makes one program better than the next? Beyond simple views such as "it works,"
the answer to this question is complex and depends on many factors: maintenance require-
ments, computer language, quality of documentation, development time, program length,
execution time, reliability, security, and so on. In this chapter we introduce the characteris-
tics of good programs and some techniques for developing good programs. We begin with
an introduction to structured programming techniques.

Structured programming is a technique for organizing and coding programs that
reduces complexity, improves clarity, and facilitates debugging and modifying. The idea of
properly structuring programs is emphasized in most programming tasks, and we advance it
here as well. The power of this approach can be appreciated by considering the following
statement: All programs may be written using only three structures. This seems too good to
be true, but it's not. "Statements," "loops," and "choices" form a complete set of structures,
and all programs can be realized using only these three structures. Program control is
passed through the structures without unconditional branches to other structures. Each
structure has one entry point and one exit point. Typically, a structured program contains a
hierarchy of subroutines, each with a single entry point and a single exit point.1

The purpose of this chapter is to introduce structured programming as applied to as-
sembly language programming and 8051 C programming. This is especially useful in the
context of assembly language programming, since although high-level languages (such as
Pascal or C) promote structured programming through their statements (WHILE, FOR,
etc.) and notational conventions (indentation), assembly language lacks such inherent pro-
perties. Nevertheless, assembly language programming can benefit tremendously through

1In high-level languages, programs are composed of functions or procedures.

217

218 | CHAPTER 9

the use of structured techniques. In contrast, since 8051 C is an extension of C, it inherits
all the structured techniques. Therefore, as we develop in this chapter structured
techniques for the assembly language, we will present the structured properties of 8051 C
as a comparison to its assembly language counterpart.

Progressing toward our goal—producing good assembly language programs—the
example problems are solved using four methods:

 Flowcharts
 Pseudo code
 Assembly language
 8051 C language

Solving programming problems in assembly language is, of course, our terminal ob-
jective; however, flowcharts and pseudo code are useful tools for the initial stages. Both of
these are "visual" tools, facilitating the formulation and understanding of the problem. They
allow a problem to be described in terms of "what must be done" rather than "how it is to be
done." The solution can often be expressed in flowcharts or pseudo code in machine-
independent terms, without considering the intricacies of the target machine's instruction set.

It is unusual for both pseudo code and flowcharts to be used. The preferred choice is
largely a matter of personal style. The most common flowcharting symbols are shown in
Figure 9-1.
FIGURE 9-1
Common symbols for flowcharting

PROGRAM STRUCTURE AND DESIGN | 219

Pseudo code is just what the name suggests: "sort of a computer language. The idea
has been used informally in the past as a convenient way to sketch out solutions to pro-
gramming problems. As applied here, pseudo code mimics the syntax of Pascal or C in its
notation of structure, yet at the same time it encourages the use of natural language in de-
scribing actions. Thus, statements such as

[get a character from the keyboard]

may appear in pseudo code. The benefit in using pseudo code lies in the strict adherence to
structure in combination with informal language. Thus we may see

IF [condition is true]
THEN [do statement 1]
ELSE BEGIN

[do statement 2]
[do statement 3]

END

o r

IF [the temperature is less than 20 degrees Celsius]
THEN [wear a jacket]
ELSE BEGIN

[wear a short sleeve shirt]
[bring sunglasses]

END

The use of keywords, indentation, and order is essential for the effective use of pseudo
code. Our goal is to clearly demonstrate the solution to a programming problem using
flowcharts and/or pseudo code, such that the translation to assembly language is easier
than direct coding in assembly language. The final product is also easier to read, debug,
and maintain. Pseudo code will be defined formally in a later section.

9.2 ADVANTAGES AND DISADVANTAGES
OF STRUCTURED PROGRAMMING

The advantages of adopting a structured approach to programming are numerous. These
include the following:

 The sequence of operations is simple to trace, thus facilitating debugging.
 There are a finite number of structures with standardized terminology.
 Structures lend themselves easily to building subroutines.
 The set of structures is complete; that is, all programs can be written using three

structures.
 Structures are self-documenting and, therefore, easy to read.
 Structures are easy to describe in flowcharts, syntax diagrams, pseudo code, and so on.
 Structured programming results in increased programmer productivity—pro-

grams can be written faster.

220 | CHAPTER 9

However, some tradeoffs occur. Structured programming has disadvantages, such as the
following:

 Only a few high-level languages (Pascal, C, PL/M) accept the structures directly;
others require an extra stage of translation.

 Structured programs may execute more slowly and require more memory than the
unstructured equivalent.

 Some problems (a minority) are more difficult to solve using only the three struc-
tures rather than a brute-force "spaghetti" approach.

 Nested structures can be difficult to follow.

9.3 THE THREE STRUCTURES

All programming problems can be solved using three structures:

 Statements
 Loops
 Choice

The completeness of the three structures seems unlikely; but, with the addition of
nesting (structures within structures), it is easily demonstrated that any programming pro-
blem can be solved using only three structures. Let's examine each in detail.

9.3.1 Statements

Statements provide the basic mechanism to do something. Possibilities include the simple
assigning of a value to a variable, such as

[count = 0]

or a call to a subroutine, such as

PRINT STRING("Select Option:")

Anywhere a single statement can be used, a group of statements, or a
statement block, can be used. This is accomplished in pseudo code by enclosing the
statements between the keywords BEGIN and END as follows:

BEGIN

[statement 1]

[statement 2]

[statement 3]

END

Note that the statements within the statement block are indented from the BEGIN and
END keywords. This is an important feature of structured programming.

9.3.2 The Loop Structure

The second of the basic structures is the "loop," used to repeatedly perform an operation.
Adding a series of numbers or searching a list for a value are two examples of programming

PROGRAM STRUCTURE AND DESIGN | 221

FIGURE 9-2

Flowchart for the WHILE/DO structure

problems that require loops. The term "iteration" is also used in this context. Although there are
several possible forms of loops, only two are necessary, WHILE/DO and REPEAT/UNTIL.

9.3.2.1 The WHILE/DO Statement The WHILE/DO statement provides the
easiest means for implementing loops. It is called a "statement," since it is treated like a
statement—as a single unit with a single entry point (the beginning) and a single exit point
(the ending). The pseudo code format is Pseudo Code:

WHILE [condition] DO
[statement]

The "condition" is a "relational expression" that evaluates to "true" or "false." If the con-
dition is true, the statement (or statement block) following the "DO" is executed, and then
the condition is reevaluated. This is repeated until the relational expression yields a false
response; this causes "statement" to be skipped, with program execution continuing at the
next statement. The WHILE/DO structure is shown in the flowchart in Figure 9-2.

EXAMPLE WHILE/DO Structure

9.1 Illustrate a WHILE/DO structure such that while the 8051 carry flag is set, a statement is
executed.

Solution

Pseudo Code:

WHILE[c == 1]DO
[statement
]

(Note: The double equal sign is used to distinguish the relational operator, which tests for
equality, from the assignment operator, the single equal sign [see 9.4 Pseudo Code Syntax].)

222|CHAPTER9

Flowchart:

9.2
Assembly Language:

ENTER: JNC EXIT
STATEMENT: (statement)

JMP ENTER

EXIT: (continue)

8051 C:

while (c == 1)
{statement;}

As a general rule, the actions within the statement block must affect at least one variable
in the relational expression; otherwise a bug in the form of an infinite loop results.

SUM Subroutine

FIGURE9-3
Flowchart for Example 9.1
EXAMPLE
Write an 8051 subroutine called SUM to calculate the sum of a series of numbers.
Parameters passed to the subroutine include the length of the series in R7 and the starting
address of the series in R0. (Assume the series is in 8051 internal memory.) Return with
the sum in the accumulator.

Solution

Pseudo Code:

[sum = 0]
WHILE [length > 0] DO BEGIN

[sum = sum + @pointer)
[increment pointer]
[decrement length]

END

PROGRAM STRUCTURE AND DESIGN | 223

F

F
F

lowchart:

IGURE 9-4

lowchart for Example 9.2

224 | CHAPTER 9

Assembly language: (closely structured; 13 bytes)

SUM: CLR A
LOOP: CJNE R7,#0,STATEMENT

JMP EXIT
STATEMENT: ADD A,@R0

INC R0
DEC R7
JMP LOOP

EXIT: RET

(loosely structured; 9 bytes)

SUM: CLR A
INC R7

MORE: DJNZ R7,SKIP
RET

SKIP: ADD A,@R0
INC R0
SJMP MORE

Notice above that the loosely structured solution is shorter (and faster) than the closely
structured solution. Experienced programmers will, no doubt, code simple examples such
as this intuitively and follow a loose structure. Novice programmers, however, can benefit
by solving problems clearly in pseudo code first and then progress to assembly language
while following the pseudo code structure.
8051 C:

void sum(int * start, int length)

{
int result = 0, i = 0;
while (length > 0)

{
result = result + start[i];
i++;

length--;

}
}

EXAMPLE WHILE/DO Structure
9.3 Illustrate a WHILE/DO structure using the following compound condition: the accumula-

tor not equal to carriage return (0DH) and R7 not equal to 0.

Solution

Pseudo Code:

WHILE [ACC!=CR AND R7!=0] DO

[statement]

PROGRAM STRUCTURE AND DESIGN | 225

Flowchart:

Assembly Language:

ENTER: CJNE A

JMP E

SKIP: CJNE R

JMP E

STATEMENT: one or

.

.

.
JMP EN

EXIT: (contin

8051 C:

while((ACC != C) &

statement;)

FIGURE 9-5

Flowchart for Example 9.3
,#0DH,SKIP

XIT

7,#0,STATEMENT

XIT

more statements)

TER

ue)

& (R7 != 0))

226 | CHAPTER 9

9.3.2.2 The REPEAT/UNTIL Statement Similar to the WHILE/DO statement is
the REPEAT/UNTIL statement, which is useful when the "repeat statement" must be
performed at least once. WHILE/DO statements test the condition first; thus, the statement
might not execute at all.
Pseudo Code:

REPEAT [statement]
UNTIL [condition]

Flowchart:

EXAMPLE

9.4
Search Subroutine
Write an 8051 subroutine to search a null-terminated string pointed at by R0 and
determine if the letter "Z" is in the string. Return with ACC = Z if it is in the string, or
ACC = 0 otherwise.

Solution

Pseudo Code:

REPEAT
[ACC = @pointer]

[increment pointer]

UNTIL [ACC == 'Z' or ACC == 0]

FIGURE 9-6

Flowchart for the REPEAT/UNTIL structure

PROGRAM STRUCTURE AND DESIGN | 227
Flowchart:

FIGURE 9-7
Assembly Language:

STATEMENT: MOV A,
INC R0
JZ EX
CJNE A,

EXIT: RET

8051 C:

char statement(cha

{
char a;
do

{
a = *start;
start++;
}

Flowchart for Example 9.4
@R0

IT
#'Z',STATEMENT

r * start)

228 | CHAPTER 9

while ((a != 'z') || (a != 0));
return a;

}

9.3.3 The Choice Structure

The third basic structure is that of "choice"—the programmer's "fork in the road." The two
most common arrangements are the IF/THEN/ELSE statement and the CASE statement.

9.3.3.1 The IF/THEN/ELSE Statement The IF/THEN/ELSE statement is used
when one of two statements (or statement blocks) must be chosen, depending on a con-
dition. The ELSE part of the statement is optional.
Pseudo Code:

IF [condition]
THEN[statement 1]
ELSE[statement 2]

Flowchart:

EXAMPLE

9.5
Character Test
Write a sequence of instructions to input and test a character from the serial port. If the
character is displayable ASCII (i.e., in the range 20H to 7EH), echo it as is; otherwise,
echo a period (.).

FIGURE 9-8
Flowchart for the IF/THEN/ELSE

structure

PROGRAM STRUCTURE AND DESIGN | 229

Solution
Pseudo Code:

[input character]
IF [character == graphic]

THEN [echo character]

ELSE [echo '.']

Flowchart:

Assembly Language: (closel

ENTER: ACA
ACA
JNC

STMENT1: ACA
JMP

STMENT2: MOV
ACA

EXIT: (co

FIGURE 9-9
Flowchart for Example 9.5
y structured; 14 bytes)

LL INCH
LL ISGRPH

STMENT2
LL OUTCHR

EXIT
A,#'.'

LL BUTCHER
ntinue)

230 | CHAPTER 9

(loosely structured; 10 bytes)

ACALL INCH
ACALL ISGRPH
JC SKIP
MOV A,#'.'

SKIP: ACALL OUTCHR
(continue)

8051 C:

while (1)

{
char a;

a = inchar();

if (isgrph(a))

outchr(a);

else
outchar(`.');

}

Modify the structure to repeat indefinitely:

WHILE [1] DO BEGIN

[input character]

IF [character == graphic]

THEN [echo character]

ELSE [echo '.']

END

9.3.3.2 The CASE Statement The CASE statement is a handy variation of the
IF/THEN/ELSE statement. It is used when one statement from many must be chosen as
determined by a value.
Pseudo Code:

CASE [expression] OF

0:[statement 0]

1:[statement 1]

2:[statement 2]

.

.

.

n:[statement n]

[default statement]

END_CASE

PROGRAM STRUCTURE AND DESIGN | 231

Flowchart:

FIGURE 9-10

Flowchart for CASE structure

EXAMPLE User Response

9.6 A menu-driven program requires a user response of 0, 1, 2, or 3 to select one of four pos-

sible actions. Write a sequence of instructions to input a character from the keyboard and

jump to ACT0, ACT, ACT2, or ACT3, depending on the user response. Omit error

checking.

Solution
Pseudo Code:

[input a character]
CASE [character] OF

'0': [statement 0]

'1': [statement 1]

'2': [statement 2]

`3': [statement 3]
END_CASE

232 | CHAPTER 9

Flowchart:

FIGURE 9-11

Flowchart for Example 9.6

Assembly Language: (closely structured)

CALL INCH
CJNE A,#'0',SKIP1

ACT0: .

.

.
JMP EXIT

SKIP: CJNE A,#'1',SKIP2
ACT: .

.

.
JMP EXIT

PROGRAM STRUCTURE AND DESIGN | 233

SKIP2: CJNE A,#'2',SKIP3
ACT2: .

.

.
SKIPS: CJNE A,#'3',EXIT
ACT3: .

.

.
EXIT: (continue)

(loosely structured)

CALL INCH ;REDUCE to 2 bit
ANL A,#3 ;WORD OFFSET
RL A
MOV DPTR,#TABLE
JMP @A+DPTR

TABLE: AJMP ACT0
AJMP ACT1
AJMP ACT2

ACT3: .

.

.
JMP EXIT

ACT0: .

.

.
JMP EXIT

ACT1: .

.

.
JMP EXIT

ACT2: .

.

.
EXIT: (continue)

8051 C:

char a;
a =
inchar();
switch(a)

case '0':
statement 0;
break;

case '1':
statement 1;
break;

234 | CHAPTER 9

case '2':
statement 2;
break;

case '3':
statement 3;

}

9.3.3.3 The GOTO Statement GOTO statements can always be avoided by using
the structures just presented. Some times a GOTO statement provides an easy method of
terminating a structure when errors occur; however, exercise extreme caution. When the
program is coded in assembly language, GOTO statements usually become unconditional
jump instructions. A problem will arise, for example, if a subroutine is entered in the usual
way (a CALL subroutine instruction), but is exited using a jump instruction rather than a
return from subroutine instruction. The return address will be left on the stack, and eventu-
ally a stack overflow will occur.

9.4 PSEUDO CODE SYNTAX

Since pseudo code is similar to a high-level language such as Pascal or C, it is worthwhile
defining it somewhat more formally, so that, for example, a pseudo code program can be
written by one programmer and converted to assembly language by another programmer.

We should acknowledge too that pseudo code is not always the best approach for de-
signing programs. While it offers the advantage of easy construction on a word processor
(with subsequent modifications), it suffers from a disadvantage common to other program-
ming languages: pseudo code programs are written line-by-line, so parallel operations are not
immediately obvious. With flowcharts, on the other hand, parallel operations can be placed
physically adjacent to one another, thus improving the conceptual model (see Figure 9-10).

Before presenting a formal syntax, the following tips are offered to enhance the
power of solving programming problems, using pseudo code.

 Use descriptive language for statements.
 Avoid machine dependencies in statements.
 Enclose conditions and statements in brackets: [].
 Begin all subroutines with their names followed by a set of parentheses: 0. Pa-

rameters passed to subroutines are entered (by name or by value) within the
parentheses.

 End all subroutines with RETURN followed by parentheses. Return values are en-
tered within the parentheses.

Examples of subroutines:

INCHAR ()
[statement]

. . .
RETURN (char)

OUTCHR(char) STRLEN(pointer)
[statement] [statement]

.
RETURN () RETURN(length)

PROGRAM STRUCTURE AND DESIGN | 235

 Use lowercase text except for reserved words and subroutine names.
 Indent all statements from the structure entry and exit points. When a LOOP or

CHOOSE structure is started, the statements within the structure appear at the next
level of indentation.

 Use the commercial at sign (@) for indirect addressing.

The following is a suggested syntax for pseudo code.

Reserved Words:

BEGIN END
REPEAT UNTIL
WHILE DO
IF THEN ELSE
CASE OF
RETURN

Arithmetic Operators:

+ addition
- subtraction

* multiplication
/ division

% modulus (remainder after division)

Relational Operators: (result is true or false)

== true if values equal to each other

!= true if values not equal
< true if first value less than second
<= true if first value <= second value

> true if first value > second value
>= true if first value >= second value
&& true if both values are true
|| true if either value is true

Bitwise Logical Operators:

& logical AND
| logical OR
^ logical exclusive OR
~ logical NOT (one's complement)
>> logical shift right
<< logical shift left

Assignment Operators:

= set equal to

op = assignment operation shorthand where "op" is one
of + - * / << >> & ^ |
e.g.: j += 4 is equivalent to j = j + 4

236 | CHAPTER 9

Precedence Operation:

()

Indirect Address:

@

Operator Precedence:

()
~ @

* / %
+ -
<< >>
< <= > >=

== !=

&

|
&&

||

= += -= *= etc.

Note 1. Do not confuse relational operators with bitwise logical operators. Bitwise logical
operators are generally used in assignment statements such as

[lower_nibble = byte & 0FH]

whereas relational operators are generally used in conditional expressions such as

IF [char 1= 'Q' && char !=0DH] THEN ...

Note 2. Do not confuse the relational operator "= =" with the assignment operator "=." For

example, the Boolean expression

j = = 9

is either true or false depending on whether or not j is equal to the value 9, whereas the

assignment statement

j = 9

assigns the value 9 to the variable j.

Structures:
Statement:

[do something]

Statement Block:

BEGIN
[statement]

PROGRAM STRUCTURE AND DESIGN | 237

[statement]
. . .

END

WHILE/DO:

WHILE [condition] DO
[statement]

REPEAT/UNTIL:

REPEAT

[statement]
UNTIL [condition]

IF/THEN/ELSE:

IF [condition]

THEN [statement 1]
ELSE [statement 2])

CASE/OF:

CASE [expression] OF
1:[statement1]
2:[statement2]
3:[statement3]

.

.

.
n:[statement n]

[default statement]
END_CASE

9.5 ASSEMBLY LANGUAGE PROGRAMMING STYLE

It is important to adopt a clear and consistent style in assembly language programming. This is

particularly important when one is working as part of a team, since individuals must be able to

read and understand each other's programs.

The assembly language solutions to problems up to this point have been deliberately

sketchy. For larger programming tasks, however, a more critical approach is required. The

following tips are offered to help improve assembly language programming style.

9.5.1 Labels

Use labels that are descriptive of the destination they represent. For example, when

branching back to repeatedly perform an operation, use a label such as "LOOP," "BACK,"

"MORE," etc. When skipping over a few instructions in the program, use a label such

238 | CHAPTER 9

as "SKIP" or "AHEAD." When repeatedly checking a status bit, use a label such as
"WAIT" or "AGAIN."

The choice of labels is restricted somewhat when one is using a simple memory-
resident or absolute assembler. These assemblers treat the entire program as a unit, thus
limiting the use of common labels. Several techniques circumvent this problem. Common
labels can be sequentially numbered, such as SKIP, SKIP, SKIP3 , etc.; or perhaps within
subroutines all labels can use the name of the subroutine followed by a number, such as
SEND, SEND2, SEND3, etc. There is an obvious loss of clarity here, since the labels
SEND2 and SEND3 are not likely to reflect the skipping or looping actions taking place.

More sophisticated assemblers, such as ASM51, allow each subroutine (or a
common group of subroutines) to exist as a separate file that is assembled independent of
the main program. The main program is also assembled on its own and then combined
with the subroutines using a linking and locating program that, among other things,
resolves external references between the files. This type of assembler, usually called a
"relocatable" assembler, allows the same label to appear in different files.

9.5.2 Comments

The use of comments cannot be overemphasized, particularly in assembly language pro-
gramming, which is inherently abstract. All lines of code, except those with truly obvious
actions, should include a comment.

Conditional jump instructions are effectively commented using a question similar to
the flowchart question for a similar operation. The "yes" and "no" answers to the question
should appear in comments at the lines representing the "jump" and "no jump" actions. For
example, in the INLINE subroutine below, note the style of comments used to test for the
carriage return <CR>code.

; ***
;
; INPUT LINE OF CHARACTERS
; INLINELINE MUST END WITH <CR>
; MAXIMUM LENGTH 31 CHARACTERS INCLUDE <CR>
;ENTER: NO CONDITIONS

;EXIT: ASCII CODES IN INTERNAL DATA RAM
; 0 STORED AT END OF LINE
;USES INCHAR, OUTCHR
;
; ***
;
INLINE: PUSH 00H ;SAVE R0 ON STACK

PUSH 07H ;SAVE R7 ON STACK
PUSH ACC ;SAVE ACCUMULATOR ON STACK
MOV R0,#60H ;SET UP BUFFER AT 60H
MOV R7,#31 ;MAXIMUM LENGTH OF LINE

STMENT: ACALL INCHAR ;INPUT A CHARACTER

ACALL OUTCHR ;ECHO TO CONSOLE

PROGRAM STRUCTURE AND DESIGN | 239

MOV @R0,A ;STORE IN BUFFER
INC RE ;INCREMENT BUFFER POINTER
DEC R7 ;DECREMENT LENGTH COUNTER
CJNE A,#0DH, SKIP ;IS CHARACTER = <CR>?
SJMP EXIT ;YES: EXIT

SKIP: CJNE R7,#0,STMENT ;NO: GET ANOTHER CHARACTER
EXIT: MOV @R0,#0

POP ACC ;RETRIEVE REGISTERS FROM
;STACK

POP 07H
POP 00H
RET

9.5.3 Comment Blocks

Comment lines are essential at the beginning of each subroutine. Since subroutines
perform well-defined tasks commonly needed throughout a program, they should be
general-purpose and well documented. Each subroutine is preceded by a comment block,
a series of comment lines that explicitly state

 The name of the subroutine
 The operation performed
 Entry conditions
 Exit conditions
 Name of other subroutines used (if any)
 Name of registers affected by the subroutine (if any)

The INLINE subroutine above is a good example of a well-commented subroutine.

9.5.4 Saving Registers on the Stack

As applications grow in size and complexity, new subroutines are often written that build
upon and use existing subroutines. Thus, subroutines are calling other subroutines, which
in turn call other subroutines, and so on. These are called "nested subroutines." There is
no danger in nesting subroutines so long as the stack has enough room to hold the return
addresses. This is not a problem, since nesting beyond several levels is rare.

A potential problem, however, lies in the use of registers within subroutines. As the
hierarchy of subroutines grows, it becomes more and more difficult to keep track of what
registers are affected by subroutines. A solid programming practice, then, is to save regis-
ters on the stack that are altered by a subroutine, and then restore them at the end of the
subroutine. Note that the INLINE subroutine shown above saves and retrieves R0, R7, and
the accumulator using the stack. When INLINE returns to the calling subroutine, these
registers contain the same value as when INLINE was called.

9.5.5 The Use of Equates

Defining constants with equate statements makes programs easier to read and maintain.
Equates appear at the beginning of a program to define constants such as carriage return

240 | CHAPTER 9

(<CR>) and line feed (<LF>), or addresses of registers inside peripheral ICs such as STA-
TUS or CONTROL.

The constant can be used throughout the program by substituting the equated symbol for
the value. When the program is assembled, the value is substituted for the symbol. A generous
use of equates makes a program more maintainable, as well as more readable. If a constant must
be changed, only one line needs changing—the line where the symbol is equated. When the pro-
gram is reassembled, the new value is automatically substituted wherever the symbol is used.

9.5.6 The Use of Subroutines

As programs grow in size, it is important to "divide and conquer"; that is, subdivide large
and complex operations into small and simple operations. These small and simple opera-
tions are programmed as subroutines. Subroutines are hierarchical in that simple subrou-
tines can be used by more complex subroutines, and so on.

A flowchart references a subroutine using the "predefined process" box. (See Figure
9-1.) The use of this symbol indicates that another flowchart elsewhere describes the
details of the operation.

Subroutines are constructed in pseudo code as complete sections of code, beginning with
their names and parentheses. Within the parentheses are the names or values of parameters
passed to the subroutine (if any). Each subroutine ends with the keyword RETURN followed by
parentheses containing the name or value of parameters returned by the subroutine (if any).

Perhaps the simplest example of subroutine hierarchy is the output stung
(OUTSTR) and output character (OUTCHR) subroutines. The OUTSTR subroutine (a
high-level routine) calls the OUTCHR subroutine (a low-level routine).

The flowcharts, pseudo code, and 8051 assembly and C language solutions are
shown below.

Pseudo Code:

OUTCHR (char)
[put odd parity in bit 7]
REPEAT [test transmit buffer]
UNTIL [buffer empty]
[clear transmit buffer empty flag]
[move char to transmit buffer]

[clear parity bit]
RETURN ()
OUTSTR (pointer)

WHILE [(char = @pointer) !=0] BEGIN
OUTCHR (char)
[increment pointer]

END
RETURN()

Assembly language:

OUTCHR: MOV C,P ;PUT PARITY BIT IN C FLAG
CPL C ;CHANGE TO ODD PARITY
MOV ACC.7,C ;ADD TO CHARACTER

AGAIN: JNB TI,AGAIN ;TX EMPTY?

PROGRAM STRUCTURE AND DESIGN | 241

CLR TI ;YES: CLEAR FLAG AND
MOV SBUF,A ; SEND CHARACTER
CLR ACC.7 ;STRIP OFF PARITY BIT AND
RET ; RETURN

OUTCHR: MOV A,@DPTR ;GET CHARACTER
JZ EXIT ;IF 0, DONE

CALL OUTSTR ;OTHERWISE SEND IT
INC DPTR ;INCREMENT POINTER
SJMP OUTCHR ; AND GET NEXT CHARACTER

EXIT: RET

Flowchart:

FIGURE 9-12
Flowchart for OUTCHR subroutine

242 | CHAPTER 9
8051C

sbit AccMSB = ACC^7;
void outchr (char a)

{
ACC = a;
CY = P;

CY = !CY;
AccMSB = CY;
while (TI != 1);
TI = 0;
SBUF = ACC;
AccMSB = 0;

}
void outstr(char * msg)

{
while (*msg !='\0')

outchr(*p++);
}

FIGURE 9-13
Flowchart for OUTSTR subroutine

PROGRAM STRUCTURE AND DESIGN | 243

9.5.7 Program Organization

Although programs are often written piecemeal (i.e., subroutines are written separately
from the main program), all programs should be consistent in their final organization. In
general, the sections of a program are ordered as follows:

 Equates
 Initialization instructions
 Main body of program
 Subroutines
 Data constant definitions (DB and DW)
 RAM data locations defined using the DS directive

All but the last item above are called the "code segment" and the RAM data locations are
called the "data segment." Code and data segments are traditionally separate, since code is
often destined for ROM or EPROM, whereas RAM data are always destined for RAM.
Note that data constants and strings defined using the DB or DW directives are part of the
code segment (not the data segment), since these data are unchanging constants and, there-
fore, are part of the program.

9.6 8051 C PROGRAMMING STYLE

When programming in 8051 C, it is even more necessary to be clear and consistent. This is
because programmers usually write in C when their 8051 programs are large and complex,
and involve several programmers working on it at the same time. The following should be
noted when programming the 8051 in C.

9.6.1 Comments

In C, comments are enclosed in between the /* and */ symbols. For example, the com-
mented "Hello World" program is given below:

main ()
{
SCON = 0x52; /* perial port, mode 1 */
TMOD = 0x20; /* timer 1, mode 2 */
TH1 = -13; /* reload count for 2400 baud */
TR1 = 1; /* start timer 1 */
while (1) /* repeat forever */

{
printf ("Hello World\n"); /* Dipplay "Hello World" */
}

}

244 | CHAPTER 9

9.6.2 The Use of Defines

You should define constants with aliases so that your program is more readable and it is easier
for you to change the constant in future by simply changing one line of code. For example:

#define PI 3.1415927
#define MAX 10

int circleArea(int radiup)
{
return (PI * radius * radius);
}

main()
{
int i;
for (i = 0; i < MAX; i++)

circleArea(i);
}

The example program above defines PI as the constant = 3.1415927 while MAX is de-
fined as the constant number 10. PI is used to calculate the area of a circle while MAX is
the maximum number of different circle areas that are being calculated. If, for example,
one desires to calculate areas of 20 different circles, then the value of MAX can be changed
by simply changing the definition line to #define MAX 20.

9.6.3 The Use of Functions

C programs, being large and complex, are normally written by several programmers
simultaneously. This is possible by using the modular programming approach, which
breaks parts of the program into modules and functions. Dividing the program into
functions allows for more modularity and makes the overall program clearer and easier to
follow. This approach has been adopted in the interface and design example programs
discussed in Chapter 12.

9.6.4 The Use of Arrays and Pointers

When it is desired to store a sequence of some related data, it is good to use arrays and have
them pointed to by pointers. Recall that pointers store addresses of memory locations.
Hence, the address of the first element of an array could be assigned to a pointer. Then each
array element could be accessed by adding a suitable offset to the pointer value and deref-
erencing it. As an example, lookup tables can be optimally implemented by using arrays.

Arrays are also useful when storing strings. For example, the message "This is a
welcome message" could be stored in memory as an array by simply using the line: char
* MSG = {"Thip is a welcome message." } which would use an array of
characters to store the string.

PROGRAM STRUCTURE AND DESIGN | 245

9.6.5 Program Organization

To standardize the layout and organization, we have adopted the following program organization when
writing 8051 C programs:

 Includes
 Constant Definitions
 Variable Definitions
 Function Prototypes
 Main Function
 Function Definitions

Constant definitions are lines such as #define PI 3.1415927 while variable definitions are those such
as char A. Function prototypes are one-line statements such as void HTOA (void) that consist of the
function name, return type, and parameter list. Meanwhile, function definitions are the full definitions of
operations done in the functions, for example:

void HTOA(void) {
A = A & 0xF; if
(A>=0xA)

A = A + 7;
A = A + '0';
}

SUMMARY

This chapter has introduced structured programming techniques through flowcharting and pseudo code.
Suggestions were offered on designing and presenting programs to enhance their readability. In the next
chapter, some of the tools and techniques for developing programs are presented.

PROBLEMS

9.1 Illustrate a WHILE/DO structure such that while the accumulator is less than or equal to 7EH, a
statement block is executed.

9.2 Illustrate a WHILE/DO structure using the following compound condition: (accumulator greater
than zero and R7 greater than zero) or the carry flag equal to 1. Treat the values in the accumulator
and R7 as unsigned integers.

9.3 Write a subroutine to find the place of the most significant 1 in the accumulator. Return with
"place" in R7. For example, if ACC = 00010000B, return with R7 = 4.

9.4 Write a subroutine called INLINE to input a line of characters from the console and place them in
internal memory, starting at location 60H. Maximum line length is 31 characters, including the
carriage return. Put 0 at the end of the line.

246 | CHAPTER 9

Tools and Techniques for
Program Development

10.1 INTRODUCTION

In this chapter, the process of developing microcontroller- or microprocessor-based pro-
ducts is described as it follows a series of steps and utilizes a variety of tools. In
progressing from concept to product, numerous steps are involved and numerous tools are
used. The most common steps and tools are presented as found in typical design scenarios
employing the 8051 microcontroller.

Design is a highly creative activity, and in recognition of this we state at the outset
that substantial leeway is required for individuals or development teams. Such autonomy
may be difficult to achieve for very large or safety-critical projects, however. Admittedly,
in such environments the management of the process and the validation of the results must
satisfy a higher order. The present chapter addresses the development of relatively small-
scale products, such as controllers for microwave ovens, automobile dashboards,
computer peripherals, electronic typewriters, or high-fidelity audio equipment.

The steps required and the tools and techniques available are presented and elabo-
rated on, and examples are given. Developing an understanding of the steps is important,
but strict adherence to their sequence is not advocated. It is felt that forcing the develop-
ment process along ordered, isolated activities is usually overstressed and probably wrong.
Later in the chapter we will present an all-in-one development scenario, where the avail-
able resources are known and called upon following the instinct of the designer. We begin
by examining the steps in the development cycle.

10.2 THE DEVELOPMENT CYCLE

Proceeding from concept to product is usually shown in a flow diagram known as the
development cycle, similar to that shown in Figure 10-1. The reader may notice that

247

248 | CHAPTER 10

FIGURE 10-1

The development cycle

there is nothing particularly "cyclic" about the steps shown. Indeed, the figure shows the
ideal and impossible scenario of "no breakdowns." Of course, problems arise. Debugging
(finding and fixing problems) is needed at every step in the development cycle with
corrections introduced by reengaging in an earlier activity. Depending on the severity of
the error, the correction may be trivial or, in the extreme, may return the designer to the
concept stage. Thus, there is an implied connection in Figure 10-1 from the output of any
step in the development cycle to any earlier step.

The steps along the top path in Figure 10-1 correspond to software development,
while those along the bottom correspond to hardware development. The two paths meet at
a critical and complicated step called "integration and verification," which leads to accept-
ance of the design as a "product." Not shown are various steps subsequent to acceptance of
the design. These include, for example, manufacturing, testing, distribution, and
marketing. The dotted line in Figure 10-1 encompasses the steps of primary concern in this
chapter (and book). These will be elaborated in more detail later. But first, we begin by
examining the steps in software development.

10.2.1 Software Development

The steps in the top path in Figure 10-1 are discussed in this section, beginning with the
specification of the application software.

Specifying Software. Specifying software is the task of explicitly stating what the soft-
ware will do. This may be approached in several ways. At a superficial level,
specifications may first address the user interface; that is, how the user will interact with
and control the system. (What effects will result from and be observed for each action
taken?) If switches, dials, or audio or visual indicators are employed on the prototype
hardware, the explicit purpose and operation of each should be stated.

TOOLS AND TECHNIQUES FOR PROGRAM DEVELOPMENT | 249

Formal methods have been devised by computer scientists for specifying software
requirements; however, they are not generally used in the design of microcontroller-based
applications, which are small in comparison to application software destined for main-
frame computers.

Software specifications may also address details of system operation below the user level.
For example, a controller for a photocopier may monitor internal conditions necessary for nor-
mal or safe operation, such as temperature, current, voltage, or paper movement. These condi-
tions are largely independent of the user interface but still must be accommodated by software.

Specifications can be modularized by system function with entry and exit conditions
defined to allow intermodule communication. The techniques described in the previous
chapter for documenting subroutines are a reasonable first step in specifying software.

Interrupt-driven systems require careful planning and have unique characteristics that
must be addressed at the specification stage. Activities without time-critical requirements
may be placed in the foreground loop or in a round-robin sequence for handling by timed
interrupts. Time-critical activities generate high-priority interrupts that take over the system
for immediate handling. Software specifications may emphasize execution time on such
systems. How long does each subroutine or interrupt service routine (ISR) take to execute?
How often is each ISR executed? ISRs that execute asynchronously (in response to an
event) may take over the system at any time. It may be necessary to block them in some in-
stances or to preempt (interrupt) them in others. Software specifications for such systems
must address priority levels, polling sequences, and the possibility of dynamically reas-
signing priority levels or polling sequences within ISRs.

Designing Software. Designing the software is a task designers are likely to jump into
without a lot of planning. There are two common techniques for designing software prior
to coding: flowcharts and pseudo code. These were the topic of Chapter 9.

Editing and Translation. The editing and translation of software occur, at least initially, in
a tight cycle. Errors detected by the assembler are quickly corrected by editing the source
file and reassembling. Since the assembler has no idea of the purpose of the program and
checks only for "grammatical" errors (e.g., missing commas, undefined instructions), the
errors detected are syntax errors. They are also called assemble-time errors.

Preliminary Testing. A run-time error will not appear until the program is executed by a
simulator or in the target system. These errors may be elusive, requiring careful observation of
CPU activity at each stage in the program. A debugger is a system program that executes a user
program for the purpose of finding run-time errors. The debugger includes features such as
executing the program until a certain address (a breakpoint) is reached, and single-stepping
through instructions while displaying CPU registers, status bits, or input/output ports.

10.2.2 Hardware Development

For the most part, this book has not emphasized hardware development. Since the 8051 is
a highly integrated device, we have focused on learning the 8051's internal architecture
and exploiting its on-chip resources through software. The examples presented thus far
have used only simple interfaces to external components.

250 | CHAPTER 10

Specifying Hardware. Specifying the hardware involves assigning quantitative data to
system functions. For example, a robotic arm project should be specified in terms of number
of articulations, reach, speed, accuracy, torque, power requirements, and so on. Designers are
often required to provide a specification sheet analogous to that accompanying an audio am-
plifier or VCR. Other hardware specifications include physical size and weight, CPU speed,
amount and type of memory, memory map assignments, I/O ports, optional features, etc.

Designing Hardware. The conventional method of hardware design, employing a pencil
and a logic template, is still widely used but may be enhanced through computer-aided
design (CAD) software. Although many CAD tools are for the mechanical or civil engi-
neering disciplines, some are specifically geared for electronic engineering. The two most
common examples are tools for drawing schematic diagrams and tools for laying out
printed circuit hoards (PCBs). Although these programs have a long learning curve, the
results are impressive. Some schematic drawing programs produce files that can be read
by PCB programs to automatically generate a layout.

Building the Prototype. There are pathetically few shortcuts for the labors of prototyp-
ing. Whether breadboarding a simple interface to a bus or port connector on a single-
board computer (SBC), or wire wrapping an entire controller board, the techniques of
prototyping are only developed with a great deal of practice. Large companies with large
budgets may proceed directly to a printed circuit board format, even for the first iteration
of hardware design. Projects undertaken by small companies, students, or hobbyists,
however, are more likely to use the traditional wire wrapping method for prototypes.

Preliminary Testing. The first test of hardware is undertaken in the absence of any ap-
plication software. Step-wise testing is important: there's no point in measuring a clock
signal using an oscilloscope before the presence of power-supply voltages has been
verified. The following sequence may be followed:

 Visual checks
 Continuity checks
 DC measurements
 AC measurements

Visual and continuity checks should occur before power is applied to the board. Con-
tinuity checks using an ohmmeter should be conducted from the IC side of the prototype,
from IC pin to IC pin. This way, the IC pin-to-socket and socket pin-to-wire connection are
both verified. ICs should be removed when power is first applied to the prototype. DC
voltages should be verified throughout the board with a voltmeter. Finally, AC measurements
are made with the ICs installed to verify clock signals, and so on.

After verifying the connections, voltages, and clock signals, debugging becomes
pragmatic: Is the prototype functioning as planned? If not, corrective action may take the
designer back to the construction, design, or specification of the hardware.

If the design is a complete system with a CPU, a single wiring error may prevent the
CPU from completing its reset sequence: The first instruction after reset may never exe-
cute! A powerful debugging trick is to drive the CPU's reset line with a low frequency
square wave (kHz) and observe (with an oscilloscope or logic analyzer) bus activity
immediately following reset.

TOOLS AND TECHNIQUES FOR PROGRAM DEVELOPMENT | 251

Functional testing of the board may require application software or a monitor pro-
gram to "work" the board through its motions. It is at this stage that software must assist in
completing the development cycle.

10.3 INTEGRATION AND VERIFICATION

The most difficult stage in the development cycle occurs when hardware meets software.
Some very subtle bugs that eluded simulation (if undertaken) emerge under real-time exe-
cution. The problem is confounded by the need for a full complement of resources: hard-
ware such as the PC development system, target system, power supply, cables, and test
equipment; and software such as the monitor program, operating system, terminal emula-
tion program, and so on.

We shall elaborate on the integration and verification step by first expanding the
area within the dotted line in Figure 10-1. (See Figure 10-2.)

Figure 10-2 shows utility programs and development tools within circles, user files
within squares, and "execution environments" within double-lined squares. The use of an
editor to create a source file is straightforward. The translation step (from Figure 10-1) is
shown in two stages. An assembler (e.g., ASM51) converts a source file to an object file,
and a linker/locator (e.g., RL51) combines one or more relocatable object files into a sin-
gle absolute object file for execution in a target system or simulator. The assembler and
linker/locator also create listing files.

The most common filename suffixes are shown in parentheses for each file type. Al-
though any filename and suffix usually can be provided as an argument, assemblers vary
in their choice of default suffixes.

If the program was written originally in a single file following an absolute format,
linking and locating are not necessary. In this case, the alternate path in Figure 10-2 shows
the assembler generating an absolute object file.

It is also possible (although not emphasized in this book) that high-level languages,
such as C or PL/M, are used instead of, or in addition to, assembly language. Translation re-
quires a cross-compiler to generate the relocatable object modules for linking and locating.

A librarian may also participate, such as Intel's LIB51. Relocatable object modules
that are general-purpose and useful for many projects (most likely subroutines) may be
stored in "libraries." RL51 receives the library name as an argument and searches the li-
brary for the code (subroutines) corresponding to previously declared external symbols
that have not been resolved at that point in linking/locating.

10.3.1 Software Simulation

Five execution environments are shown in Figure 10-2. Preliminary testing (see Figure 10-1)
proceeds in the absence of the target system. This is shown in Figure 10-2 as software sim-
ulation. A simulator is a program that executes on the development system and imitates the
architecture of the target machine. An 8051 simulator, for example, would contain a fictitious
(or "simulated") register for each of the special function registers and fictitious memory
locations corresponding to the 8051's internal and external memory spaces. Programs

FIGURE 10-2

Detailed steps in the development cycle

TOOLS AND TECHNIQUES FOR PROGRAM DEVELOPMENT | 253

are executed in simulation mode with progress presented on the development system's
CRT display. Simulators are useful for early testing; however, portions of the application
program that directly manipulate hardware must be integrated with the target system for
testing.

10.3.2 Hardware Emulation

A direct connection between the development system and the target system is possible
through a hardware emulator (or in-circuit emulator). The emulator contains a proces-
sor that replaces the processor IC in the target system. The emulator processor, however,
is under the direct control of the development system. This allows software to execute in
the environment of the target system without leaving the development system. Commands
are available to single-step the software, execute to a breakpoint (or the nth occurrence of a
breakpoint), and so on. Furthermore, execution is at full speed, so time-dependent bugs
may surface that eluded debugging under simulation.

The main drawback of hardware emulators is cost. PC-hosted units sell in the $2,000
to $7,000 (U.S.) range, which is beyond the budget of most hobbyists and stretches the
budgets of most colleges or universities (if equipping an entire laboratory, for example).
Companies supporting professional development environments, however, will not hesitate
to invest in hardware emulators. The benefit in accelerating the product development
process easily justifies the cost.

10.3.3 Execution from RAM

An effective and simple scenario for testing software in the target system is possible, even
if a hardware emulator is not available. If the target system contains external RAM config-
ured to overlap the external code space (using the method discussed in Chapter 2; see 2.6.4,
Data Pointer), then the absolute object program can be transferred, or "downloaded," from
the development system to the target system and executed in the target system.

Intel Hexadecimal Format. As shown in Figure 10-2, an extra stage of translation is
required to convert the absolute object file to a standard ASCII format for transmission.
Since object files contain binary codes, they cannot be displayed or printed. This
weakness is alleviated by splitting each binary byte into two nibbles and converting each
nibble to the corresponding hexadecimal ASCII character. For example, the byte 1AH
cannot be transmitted to a printer because in ASCII it represents a control character rather
than a graphic character. However, the bytes 31H and 41H can be transmitted to a printer
because they correspond to graphic or displayable ASCII codes. In fact, these two bytes
will print as "1A." (See Appendix F.)

One standard for storing machine language programs in .a displayable or printable
format is known as "Intel hexadecimal format." An Intel hex file is a series of lines or
"hex records" containing the following fields:

Field Bytes Description

Record mark 1 ":"indicates start-of-record
Record length 2 number of data bytes in record

254 | CHAPTER 10

Load address 4 starting address for data bytes
Record type 2 00 = data record; 01 = end record
Data bytes 0-16 data
Checksum 2 sum of all bytes in record +

checksum = 0

These fields are shown in the Intel hexadecimal file in Figure 10-3. Conversion programs are
available that receive an absolute object program as input, convert the machine language
bytes to Intel hexadecimal format, and generate a hex file as output. Intel's conversion utility
is called OH.

10.3.4 Execution from EPROM

Once a satisfactory degree of performance is obtained through execution in RAM (or
through in-circuit emulation), the software is burned into EPROM and installed in the sys-
tem as firmware. Two types of EPROMs are identified in Figure 10-2 as examples. The
8751 is the EPROM version of the 8051, and the 2764 is a common, general-purpose
EPROM used in many microprocessor- or microcontroller-based products. Systems de-
signed using an 8751 benefit in that Ports 0 and 2 are available for I/O, rather than func-
tioning as the address and data buses. However, 8751s are relatively expensive compared
to 2764s ($30 versus $5, for example).

10.3.5 The Factory Mask Process

If a final design is destined for mass production, then a cost-effective alternative to EPROM
is a factory mask ROM, such as the 8051. An 8051 is functionally identical to an 8751; how-
ever, code memory cannot be changed on an 8051. The data are permanently entered during
the IC manufacturing cycle using a "mask"-essentially a photographic plate that passes or

FIGURE 10-3

Intel hexadecimal format

TOOLS AND TECHNIQUES FOR PROGRAM DEVELOPMENT | 255

masks (i.e., blocks) light during a stage of manufacturing. Connections to memory cells in
the 8051 are either made or blocked, thus programming each cell as a 1 or 0.

The choice of using an 8751 versus an 8051 is largely economic. A factory mask
device is considerably cheaper than the EPROM device; however, there is a large setup
fee to produce the mask and initiate a custom manufacturing cycle. A tradeoff point can be
identified to determine the feasibility of each approach. For example, if 8751s sell for $25
and 8051s sell for $5 plus a $5,000 setup fee, then the break-even point is

25 n = 5 n + 5000
20 n = 5000

n = 250 units

A production run of 250 units or more would justify the use of the 8051 over the 8751.
The situation is more complicated when comparing designs using an 8051 versus an

8031 + 2764, for example. In the latter case, the 8031 + 2764 alternative is much cheaper
than an 8751 with on-chip EPROM, so the tradeoff point occurs at much greater
quantities. If an 8031 + 2764 sells for, say, $7, then the break-even point is

7 n = 5 n + 5000
2 n = 5000

n = 2500 units

A production run of 1000 units would not justify use of the 8051—or so it seems. The use of
external EPROM means that Ports 0 and 2 are unavailable for I/O. This may be a critical point
that prevents the 8031 + 2764 approach. Even if the loss of on-chip I/O is not a concern, other
factors enter. The 8031 + 2764 approach requires two ICs instead of one. This complicates
manufacturing, testing, maintenance, reliability, procurement, and a host of other seemingly in-
nocent, but nevertheless real, dimensions of product design. Furthermore, the 8031 + 2764
design will be physically larger than the 8051 design. If the final product necessitates a small
form factor, then the 8051 may have to be used, regardless of the additional cost.

10.4 COMMANDS AND ENVIRONMENTS

In this section the overall development environment is considered. We present the notion
that at any time the designer is working within an "environment" with commands doing
the work. The central environment is the operating system on the host system, which is
most likely MS-DOS running on a member of the PC family of microcomputers. As
suggested in Figure 10-4, some commands return to MS-DOS upon completion, while
others evoke a new environment.

Invoking Commands. Commands are either resident (e.g., DIR) or transient (e.g.,
FORMAT, DISKCOPY). A resident command is in memory at all times, ready for execu-
tion (e.g., DIR). A transient command is an executable disk file that is loaded into
memory for execution (e.g., FORMAT).

Application programs are similar to transient commands in that they exist as an exe-
cutable disk file and are invoked from the MS-DOS prompt. However, there are still many
possibilities. Commands or applications may be invoked as part of a batch file, by a func-
tion key, or from a menu-driven user interface acting as a front-end for MS-DOS.

256 | CHAPTER 10

FIGURE 10-4
The development environment

If command arguments are needed, there are many possibilities again. Although argu-
ments are typically entered on the invocation line following the command, some
commands have default values for arguments, or prompt the user for arguments.
Unfortunately, there is no standard mechanism, such as the "dialogue box" used in the
Macintosh interface, to retrieve extra information needed for a command or application.

Some applications, such as editors, "take over" the system and bring the user into a
new environment for subsequent activities.

Environments. As evident in Figure 10-4, some software tools such as the simulator, in-
circuit emulator, or EPROM programmer evoke their own environment. Learning the nuances

TOOLS AND TECHNIQUES FOR PROGRAM DEVELOPMENT | 257

of each takes time, due to the great variety of techniques for directing the activities of the
environment: cursor keys, function keys, first-letter commands, menu highlighting, default
paths, and so on. It is often possible to switch among environments while leaving them ac-
tive. For example, terminal emulators and editors usually allow switching to DOS
momentarily to execute commands. The MS-DOS command EXIT immediately brings the
user back the suspended environment.

Methodology. As research in artificial intelligence and cognitive science has discovered,
modeling human "problem solving" is a slippery business. Humans appear to approach the
elements of a situation in parallel, simultaneously weighing possible actions and proceeding by
intuition. The methodology suggested here recognizes this human quality. The steps in the
development cycle and the tools and techniques afforded by the development environment
should be clearly understood, but the overall process should support substantial freedom.

The basic operation of commands is to "translate," "view," or "evoke" (a new environ-
ment). The results of translation should be viewed to verify results. We can take the attitude of
not believing the outcome of any translation (assembling, EPROM programming, etc.) and
verify everything by viewing results. Tools for viewing are commands such as DIR (Were the
expected output files created?), TYPE (What's in the output file?), EDIT, PRINT, and so on.

SUMMARY

The tools and techniques available for designing microcontroller-based products have
been introduced in this chapter. There is no substitute for experience, however. Success in
design requires considerable intuition, a valuable commodity that cannot be delivered in a
textbook. The age-old expression "trial and error" still rings true as the main technique
employed by designers for turning ideas into real products.

PROBLEMS

10.1 If 8751 EPROMs sell for $30 in any quantity and a mask-programmed 8051 sells
for $3 plus a $10,000 setup fee, how many units are necessary to justify use of the
8051 device? What is the savings for projected sales of 3,000 units of the final
product if the 8051 is used instead of the 8751?

10.2 Below is an 8051 program in Intel hex format.

a. What is the starting address of the program?
b. What is the length of the program?
c. What is the last address of the program?

258 | CHAPTER 10

10.3 The following is a single line from an Intel hex file with an error in the checksum.
The incorrect checksum appears in the last two characters as "00." What is the cor-
rect checksum?

10.4 The contents of an Intel hex file are shown below.

Recreate the original source program that this file represents.

Design and Interface Examples

11.1 INTRODUCTION

Many of the 8051's hardware and software features are brought together in this chapter
through several design and interface examples. The first is an 8051 single-board computer—
the SBC-51—suitable for learning about the 8051 or developing 8051-based products. The
SBC-51 uses a substantial monitor program offering basic commands for system operation
and user interaction. The monitor program (MON51) is described in detail in Appendix G.

The interface examples are advanced in comparison to those presented in previous
chapters. Each example includes a hardware schematic, a statement of the design
objective, a software listing of a program that achieves the design objective, and a general
description of the operation of the hardware and software. The software listings are
extensively commented and should be consulted for specific details.

11.2 THE SBC-51

Several companies offer 8051 single-board computers similar to that described in this
section. Surprisingly, the basic design of an 8051 single-board computer does not vary
substantially among the various products offered. Since many features are "on-chip,"
designing an 8051 single-board computer is straightforward. For the most part, only the
basic connections to external memory and the interface to a host computer are required.

A monitor program in EPROM is also required. The most basic system requirements,
such as examining and changing memory locations or downloading application programs
from a host computer, are needed to get "up and running." The SBC-51 described here
works together with a simple monitor program to provide these basic functions.

259

260 | CHAPTER 11

Figure 11-1 contains the schematic diagram for the SBC-51. The entire design in-
cludes only 10 ICs yet is powerful and flexible enough to support the development of
sophisticated 8051-based products. Central to the operation of the SBC-51 is a monitor
program that resides in EPROM and communicates with a video display terminal (VDT)
connected to the 8051. The monitor program is described in detail in Appendix G.

The SBC-51 includes, in addition to the standard 80C31 features, 16K bytes of ex-
ternal EPROM, 8.25K bytes of external RAM, an extra 14-bit timer, and 22 extra
input/output lines. The configuration shown in Figure 11-1 includes the following com-
ponents and parts:

 10 integrated circuits
 15 capacitors
 2 resistors
 1 crystal
 1 push-button switch
 3 connectors
 13 configuration jumpers

Since external memory is used, Port 0 and Port 2 are unavailable for input/output.
Although Ports 1 and 3 are partially utilized for special features, some Port 1 and Port 3
lines may be used for input/output purposes, depending on the configuration.

The 80C31 clock source is a 12 MHz crystal connected in the usual way. (See Figure
2-2.) The RST (reset) line is driven by an R-C network for power-on reset and by a push
button switch for manual reset. Port 0 doubles as the data bus (D0 to D7) and the low-byte
of the address bus (A0 to A7), as discussed earlier. (See 2.7 External Memory.) A
74HC373 octal latch is clocked by ALE to hold the low-byte of the address bus for the
duration of a memory cycle. Since the 80C31 does not include on-chip ROM, execution is
from external EPROM, and so EA (external access) is connected to ground through
configuration jumper X2.

The connection to the host computer or VDT uses a serial RS232C interface. The
DB25S connector is wired as a DTE (data terminal equipment) with transmit data (TXD)
on pin 2, receive data (RXD) on pin 3, and ground on pin 7. A 1488 RS232 line driver
connects to TXD and a 1489 RS232 line receiver connects to RXD. The default
connection to the 80C31 is through jumpers X9 and X10 with P3.1 as TXD and P3.0 as
RXD. Optionally, through jumpers X11 and X12, the TXD and RXD functions can be
provided through software using P1.7 and P1.6.

Port 1 lines 3, 4, and 5 are read by the monitor program upon reset to evoke special
features. After reset, however, these lines are available for general-purpose I/O. If the
printer interface is used, Port 1 lines 0, 1, and 2 are the handshake signals. If the printer
interface is not used, these lines are available for general-purpose I/O.

The 74H4C138 decodes the upper three bits on the address bus (A15 to A13) and
generates eight select lines, one for each 8K block of memory. These are called S8K0 (for
"select 8K block 0") through to S8K7. Four ICs are selected by these lines: two 2764
EPROMs, a 6264 RAM, and an 8155 RAM/IO/TIMER.

Two 2764 8K by 8 EPROMs are shown in Figure 11-1. The first (labeled "MONI-
TOR EPROM") is selected by S8K0 and resides in the external code space from address

FIGURE 11-1a

An 8051 single-board computer—the SBC-51 (a) Processor and serial port interface; (b) Address

decoding, RAM, and EPROM; (c) 8155 and power connections

261

FIGURE 11-1b
continued

262

DESIGN AND INTERFACE EXAMPLES | 263

FIGURE 11-1c

continued

264 | CHAPTER 11

0000H to 1FFFH. Since the SBC-51 will begin execution from address 0000H

immediately after a system reset, the monitor program must reside in this IC. The second

2764 is labeled "USER EPROM" and is selected by S8K1 for execution at addresses 2000H

to 3FFFH. This IC is intended for user applications and is not needed for basic system

operation. Note that both EPROMs are selected only if CE (chip enable; pin 20) is active (or

low) and OE is also active (or low). OE is driven by the 80C31's PSEN line; thus selection

is in the external code space, as expected.

The 6264 8K by 8 RAM IC is selected by S8K4 (if jumper X6 is installed, as
shown), so it resides at addresses 8000H to 9FFFH. The RAM is selected to occupy both
the external data space and the external code space using the method described earlier.
(See Section 2.7.4 Overlapping the External Code and Data Spaces.) This dual occupancy
allows user programs to be loaded (or written) to the RAM as "data memory" and then
executed as "code memory."

The 8155 RAM/IO/TIMER is a peripheral interface IC that was added to

demonstrate the expansion capabilities of the SBC-51. It is easy to add other peripheral

interface ICs in a similar way. The 8155 is selected by S8K0 placing it at the bottom of

memory. No conflict occurs with the monitor EPROM (which also resides at the bottom

of memory, but in the external code space) because the 8155 is further selected for read

and write operations using RD and WR .
The 8155 contains the following features:

 256 bytes of RAM
 22 input/output lines
 14-bit timer

Address line A8 connects to the 8155's IO/ M line (pin 7) and selects the RAM when low
and the I/O lines or timer when high. The I/O lines and timer are accessed from six ad-
dresses, so the total address range of the 8155 is 0000H to 0105H (256 + 6 addresses).
These are summarized below.

Address Purpose

0000H first RAM address
Other RAM addresses

OOFFH last RAM address

0100H Interval/command register
0101H Port A
0102H Port B
0103H Port C
0104H Low-order 8 bits of timer count
0105H High-order 6 bits of timer count & 2 bits of

timer mode

Although the manufacturer's data sheet should be consulted for details of the 8155's ope-
ration, configuring the I/O ports is extremely easy. By default all port lines are inputs after
a system reset; therefore, no "initialize" operation is needed to read input devices

DESIGN AND INTERFACE EXAMPLES | 265

connected to the 8155. To read Port A into the accumulator, for example, the following
instruction sequence is used:

MOV DPTR,#0100H ;DPTR points to 8155 Port A
MOVX A,@DPTR ;read Port A into Acc

To program Port A and Port B as outputs, is must first be written into the command register
bits 0 and 1, respectively. For example, to configure Port B as an output port and leave Port
A and Port C as input, the following instruction sequence is used:

MOV DPTR,#0100H ;8155 command register

MOV A,#0000001OB ;Port B = output

MOVX @DPTR,A ;initialize 8155

Port C is configured as an output by writing 1s to the command register bits 2 and 3. All
three ports would be configured as output as follows:

MOV DPTR,#0100H ;8155 command register

MOV A,#00001111B ;all ports = output

MOVX @DPTR ;initialize 8155

Port A of the 8155 is shown connected to a 20-pin header labeled "Centronics printer
interface." This interface is for demonstration purposes only. MON51 includes a PCHAR
(print character) subroutine and directs output to the VDT and a parallel printer if
CONTROL-Z is entered on the keyboard. (See Appendix G.) Of course, Port A can be used
for other purposes if desired.

Power-supply connections are also shown in Figure 11-1. The filter capacitors
are particularly important for the +5 volt supply to avoid glitches due to inductive ef-
fects when digital devices switch. If the SBC-51 is constructed on a prototype board
(for example, by wire wrapping), these capacitors should be considered critical. Place a
10 µF electrolytic capacitor where power enters the prototype board, and 0.01 µF ce-
ramic capacitors beside the socket for each IC, wired between the +5 volt pin and the
ground pin.

Since the SBC-51 is small and inexpensive, it is easy to construct a prototype and
gain hands-on experience through the monitor program and the interfacing examples in this
chapter. Wire wrapping is the most practical method of construction. The SBC-51 is also
available assembled and tested on a printed-circuit board (see Figure 11-2).

This concludes our description of the SBC-51. The following sections contain exam-
ples of interfaces to peripheral devices that have been developed to connect to the SBC-51
(or a similar 8051 single-board computer).

11.3 HEXADECIMAL KEYPAD INTERFACE

Interfaces to keypads are common for microcontroller-based designs. Keypad input
and LED output are an economical choice for a user interface and are often adequate

266|CHAPTER11

FIGURE11-2
The printed-circuit board version of the SBC-51 (Courtesy URDA, Inc.)

for complex applications. Examples include the user interface to microwave ovens or
automated banking machines. Figure 11-3 shows an interface between Port 1 and a
hexadecimal keypad. The keypad contains 16 keys arranged in four rows and four columns.
The row lines are connected to Port 1 bits 4-7, the column lines to Port 1 bits 0-3.
FIGURE11-3
Interface to hexadecimal keypad

DESIGN AND INTERFACE EXAMPLES | 267

EXAMPLE Design Objective

11.1 Write a program that continually reads hexadecimal characters from the keypad and echoes
the corresponding ASCII code to the console.

On the surface, this example seems quite simple. The software can be divided into
the following steps:

1. Get a hexadecimal character from the keypad.
2. Convert the hexadecimal code to ASCII.
3. Send the ASCII code to the VDT.
4. Go to step 1.

In fact, the software solution shown in Figure 11-4 follows this exact pattern (see
lines 16-19). Of course, the work is done in the subroutines. Note that steps 2 and 3 above
are implemented by calling subroutines in MON51. Of course, the code could have been
extracted from MON51 and placed in the listing in Figure 11-4, but that's wasteful. In-
stead, the MON51 entry points for these subroutines are defined near the top of the listing
(in lines 12-13) using the symbols HTOA and OUTCHR, and then the subroutines are
called in the MAIN program loop in the usual way. Incidentally, the entry points for
MON51 subroutines can be found in the symbol table created by RL51 when MON51 was
linked and located. The entry points for HTOA and OUTCHR, for example, are found in
Appendix G.

The real challenge for this example is writing the subroutines IN_HEX and

GET_KEY. GET_KEY does the work of scanning the row and column lines of the key

pad to determine if a key is pressed. If no key is pressed, it returns with C = 0. If a key is

pressed, it returns with C = 1 and the hexadecimal code for the key in the accumulator bits

0-3.

IN_HEX performs software debouncing. Since the keypad is a series of mechanical

switches, contact closure and release include bounce—the rapid but brief make-and-break

of the switch contacts. Debouncing is performed by calling GET_HEX repeatedly until 50

consecutive calls return with C = 1. Any call to GET_HEX returning with C = 0 is inter-

preted as noise (i.e., bounce) and the counter is reset. After detecting a legitimate key clo-

sure, IN_HEX then waits for 50 consecutive calls to GET_HEX returning with C = 0. This

ensures a clean key release before the next call to GET_HEX.
The software in Figure 11-4 works, but it is not particularly elegant. Since interrupts

are not used, the program's utility within a larger application is limited. A reasonable im-
provement, therefore, is to redesign the software, using interrupts. An interrupt-driven in-
terface is illustrated in the next example.

11.4 INTERFACE TO MULTIPLE 7-SEGMENT LEDS

An interface to a 7-segment LED display was presented in a problem at the end of
Chapter 3. (See Figure 3-8.) Unfortunately, the interface used seven lines on Port 1,
so it represents a poor allocation of the 8051's on-chip resources. In this section, we

FIGURE 11-4a

Software for keypad interface

268

DESIGN AND INTERFACE EXAMPLES | 269

FIGURE 11-4b

continued

demonstrate an interface to four 7-segment LEDs using only three of the 8051's I/O lines.
This, obviously, is a much-improved design, particularly if multiple segments must be
connected.

Central to the design is the Motorola MC14499 7-segment decoder/driver, which in-
cludes much of the circuitry necessary to drive four displays. The only additional components
are a 0.015 µF timing capacitor, seven 47 Ohm current-limiting resistors, and four 2N3904
transistors. Figure 11-5 shows the connections between the 80051, the MC14499, and the four
7-segment LEDs.

EXAMPLE Design Objective

11.2 Assume BCD digits are stored in internal RAM locations 70H and 71H. Copy the BCD dig-
its to the LED display 10 times per second using interrupts.

The software to accomplish the above objective is shown in Figure 11-6. The list-
ing illustrates a number of concepts discussed earlier. The low-level details of sending
data to the MC14499 are found in the subroutines UPDATE and OUTS. At a higher
level, this example illustrates the design of interrupt-driven applications with a signifi-
cant amount of foreground and background activity (unlike the examples in Chapter 6,
which operated only in the background). The interrupts for this example coexist with
MON51, which does not itself use interrupts. The monitor program executes in the
foreground while the program in Figure 11-6 executes at interrupt-level in the
background. When the program is started (e.g., by entering the MON51 command
GO8000; see Appendix G), conditions are initialized for the necessary interrupt-
initiated updating of the LED displays, and then control quickly passes back to the
monitor program. Monitor commands can be executed in the usual way; meanwhile,
interrupts are occurring in the background. If, for example, the monitor SET command
is used to change internal RAM locations 70H and 71H, the changes are seen
immediately (within 0.1 s) on the 7-segment LED displays.
Note the overall structure of the program. The following sections appear in order:

 Assembler controls (lines 1-3)
 Comment block (lines 4-30)

270

FIGURE 11-5

Interface to MC14499 and four 7-segment LEDs

FIGURE 11-6a

Software for MC14499 interface

271

272 | CHAPTER 11

FIGURE 11-6b
continued

DESIGN AND INTERFACE EXAMPLES | 273

 Definition of symbols (lines 31-38)
 Define storage declarations (lines 40-42)
 Jump table for program and interrupt entry points (lines 44-51)
 Main section (MAIN; lines 56-69)
 External interrupt service routine (EXTOISR; lines 74-77)
 Update LED display subroutine (UPDATE; lines 89-97)
 Output byte subroutine (OUT8; lines 103-113)
 Code to handle unimplemented interrupts (lines 118-123)

The program is written for execution at address 8000H in the SBC-5l's 6264 RAM IC.
Since interrupts vector through locations at the bottom of memory, the monitor program
includes a jump table redirecting interrupts to addresses starting at address 8000H. (See
Appendix G.) The program entry point is conveniently 8000H; however, an LJMP in-
struction (line 45; see Figure 11-6) passes control to the label MAIN. All the initialize
instructions are contained in lines 56-68. The MAIN section terminates by jumping back
the monitor program.

11.5 INTERFACE TO LIQUID CRYSTAL DISPLAYS (LCDS)

The previous section saw the use of 7-segment LEDs for display purposes. The 7-segment
display is sufficient for displaying numbers and simple characters but some more complex
characters require the use of other alternatives such as the liquid crystal display (LCD).
One very popular application of LCDs is in scientific calculators. In this section, we will
show how to interface to a simple LCD consisting of two lines of 16 characters, each
character formed by a 5 x 7 dot matrix. Most LCDs are compatible with the de facto
Hitachi HD44780 standard. The connections between the 8051 and an HD44780-
compatible LCD are straightforward and are shown in Figure 11-7.

FIGURE 11-7
Interface to an LCD

274 | CHAPTER 11

EXAMPLE Design Objective
11.3 Assume that ASCII characters are stored in internal RAM locations 30H-7FH. Write a pro-

gram to continually display these characters on the LCD, 16 characters at a time.

The software listing for this is in Figure 11-8. As previously shown in Figure 11-7,

the LCD has three control lines: Register Select (RS), Read/Write (R/ W), and Enable (E).

When RS = 0, a command word is to be sent to the LCD while if RS = 1, a data word

would be sent

FIGURE 11-8a
Software for LCD interface

DESIGN AND INTERFACE EXAMPLES | 275

FIGURE 11-8b
continued

276 | CHAPTER 11

TABLE 11-1

LCD command codes

Code Description

1 Cleardisplay screen
2 Return tohomeposition
4 Shift cursor to left
5 Shift display right
6 Shift cursor to right
7 Shift display left
8 Display off, cursor off
A Display off, cursor on
C Display on, cursor off
E Display on, cursor blinking
F Display on, cursor not blinking
10 Shift cursor to left
14 Shift cursor to right
18 Shift entire display to left
1C Shift entire display to right
80 Forcecursor tobeginningof1

st
line

C0 Force cursor to beginningof2nd line
38 2 lines, 5 X 7 matrix display

instead. R/ W = 1 means that the 8051 would be reading from the LCD whereas R/ W = 0
means that the 8051 is writing to the LCD. Finally, E has to be set high and then brought low to
signal to the LCD that its attention is required to process the command or data currently avail-
able at its data pins. Table 11-1 shows the command codes that could be issued to the LCD.

The software first calls an INIT subroutine to initialize the display modes and
settings before proceeding to display on the LCD a sequence of 16 ASCII characters at a
time. Notice that before sending any data to the LCD, a WAIT subroutine is called first to
wait as long as the LCD is busy. This can be determined from pin 7 of the LCD's data bus,
D7. Only when the LCD is no longer busy would the software call the OUT subroutine to
send a byte of data or command to the LCD's data bus.

11.6 LOUDSPEAKER INTERFACE

Figure 11-9 shows an interface between an 8031 and a loudspeaker. Small loudspeakers,
such as those found in personal computers or children's toys, can be driven from a single
FIGURE 11-9

Interface to a loudspeaker

DESIGN AND INTERFACE EXAMPLES | 277

logic gate, as shown. One side of the loudspeaker's coil connects to +5 volts, the other to
the output of a 74LS04 logic inverter. The inverter is required because it has a higher drive
capability than the port lines on the 8031.

EXAMPLE Design Objective

11.4 Write an interrupt-driven program that continually plays an A-major musical scale.

Musical melodies are easy to generate from an 8051, using a simple loudspeaker in-
terface. We begin with some music theory. The frequency for each note in an A-major
musical scale is given in the comment block at the top of the software listing in Figure 11-
10 (lines 14-21). The first frequency is 440 Hz (called "A above middle C"), which is the
international reference frequency for musical instruments using the equal-tempered scale
(e.g., the piano). The frequency of all other notes can be determined by multiplying this
frequency by 2n/12, where n is the number of steps (or "semitones") to the note being calcu-
lated. The easiest example is A', one octave, or 12 steps, above A, which has a frequency
of 440 X 212/12 = 880 Hz. This is the last note in our musical scale. (See Figure 11-10, line
21.) With reference to the bottom note (or "root") in any major scale in steps is 2, 4, 5, 7,
9, 11, and 12. For example, the note "E" in Figure 11-10 (line 18) is seven steps above the
root; thus its frequency is 440 X 27/12 = 659.26 Hz.

To create a musical scale, two timings are required: the timing from one note to the
next, and the timing for toggling the port bit that drives the loudspeaker. These two
timings are vastly different. To play the melody at a rate of four notes/second, for
example, a time-out (or interrupt) is needed every 250 ms. To create the frequency for the
first note in the scale, a timeout is needed every 1.136 ms. (See Figure 11-10, line 14.)

The software in Figure 11-10 initializes both timers for 16-bit timer mode (line 43)
and uses Timer 0 interrupts for the note changes, and Timer 1 interrupts for the frequency
of notes. The reload values for the note frequencies are read from a look-up table (lines
90-104). Consult the listing in Figure 11-10 for further details.

11.7 NONVOLATILE RAM INTERFACE

Nonvolatile RAMS (NVRAMs) are semiconductor memories that maintain their contents in
the absence of power. NVRAMs incorporate both standard static RAM cells and electrically
erasable programmable ROM (EEPROM) cells. Each bit of the static RAM is overlaid with
a bit of EEPROM. Data can be transferred back and forth between the two memories.

NVRAMs occupy an important niche in microprocessor- and microcontroller-based
applications. They are used to store setup data or parameters that are changed occasionally
by the user but must be retained when power is lost.

As an example, many VDT designs avoid the use of DIP switches (which are prone
to failure) and use NVRAMs to store setup information such as baud rate, parity on/off,
parity odd/even, and so on. Each time the VDT is turned on, these parameters are recalled
from NVRAM and the system is initialized accordingly. When a parameter is changed by
the user (via the keyboard), the new value is stored in NVRAM.

Modems with an auto-dial feature usually hold phone numbers in internal memory.
These phone numbers are often stored in a NVRAM so they will be retained in the event of
a power outage. Ten phone numbers with seven digits each can be stored in 35 bytes (by
encoding each digits in BCD notation)

FIGURE 11-10a

Software for loudspeaker interface

278

DESIGN AND INTERFACE EXAMPLES | 279

FIGURE 11-10b

continued

280 | CHAPTER 11

FIGURE 11-11

Cover page for the X2444 nonvolatile RAM data sheet

DESIGN AND INTERFACE EXAMPLES | 281

The NVRAM used for this interface example is an X2444 manufactured by Xicor,1 a
company that specializes in NVRAMs and EEPROMs. The X2444 contains 256 bits of static
RAM overlaid by 256 bits of EEPROM. Data can be transferred back and forth between the
two memories either by instructions sent from the processor over the serial interface or by
toggling the external STORE and RECALL inputs. Nonvolatile data are retained in the EEP-
ROM, while independent data are accessed and updated in the RAM. The X2444 features are
summarized in the first page of its data sheet, reproduced in Figure 11-11.

In this interface example, the STORE and RECALL lines are not used. The various
modes of operation are entered by sending the X2444 serial instructions through 8051 ports
pins. The interface to the 8051 is shown in Figure 11-12. Only three lines are used:

 P1.0-SK (serial clock)
 P1.1-CE (chip enable)
 P1.2-DI/DO (data input/output)

Instructions are sent to the X2444 by bringing CE high and then clocking an 8-bit
op-code into the X2444 via the SK and DI/DO lines. The following opcodes are required
for this example:

Instruction Opcode Operation

RCL 85H Recall EEPROM data into RAM
WREN 84H Set write enable latch
STORE 81H Store RAM data into EEPROM
WRITE 1AAAA011B Write data into RAM address AAAA
READ 1AAAA111B Read data from RAM address AAAA

FIGURE 11-12

Interface to X2444 nonvolatile RAM

1
XICOR, Inc., 851 Buckeye Court, Milpitas, CA 95035.

282 | CHAPTER 11

EXAMPLE Design Objective

11.5 Write the following two programs. The first, called SAVE, copies the contents of 8051
internal locations 60H-7FH to the X2444 EEPROM. The second, called RECOVER,
reads previously saved data from the X2444 EEPROM and restores it to locations
60H-7FH. These are two distinct programs. Typically the SAVE program is executed
when ever nonvolatile information is changed (for example, by a user altering a
configuration parameter). The RECOVER program is executed each time the system is
powered up or reset. For this example, the nonvolatile information is kept in the 8051
internal locations 60H-7FH (presumably for access by a control program executing in
firmware). The software listing is shown in Figure 11-13.

The operations of saving and recovering data involve the following steps:

Write Data into the X2444

1. Execute RCL (recall) instruction.
2. Execute WREN (set write enable latch) instruction.
3. Write data into X2444 RAN.
4. Execute STO (store RAM into EEPROM) instruction.

5. Execute SLEEP instruction.

Read Data from X2444

1. Execute RCL (recall) instruction.
2. Read data from X2444 RAM.

3. Execute SLEEP instruction.

As an example of what the software drivers must do, Figure 11-14 illustrates the timing
diagram to send the RCL instruction to the X2444. Several of the bits are actually "don't
cares" (as specified in the data sheet); however, they are shown as 0s in the figure.

The timing for the WRITE data and READ data instructions is slightly different.
For these, the 8-bit opcode is followed immediately by 16 bits of data, and chip enable
remains high for all 24 bits. For the read instruction, the eight bits (the opcode) are written
to the X2444, then 16 data bits are read from the X2444. Separate subroutines are used for
reading eight bits (R_BYTE; lines 106-112) and writing eight bits (W_BYTE; lines 117-
123). For specific details, consult the software listing.

11.8 INPUT/OUTPUT EXPANSION

The 8051 has four input/output ports, Port 0 to Port 3. If external memory is used, then all or
part of Port 0 and Port 2 would be taken up as data and/or address lines, thereby reducing the
number of available I/O lines for general purpose I/O usage. In this section, we will discuss
two simple ways to increase the number of I/O lines. This is called expanding the I/O.

11.8.1 Using Shift Registers

Our next example illustrates a simple way to increase the number of input lines on the
8051. Three port lines are used to interface to multiple (in this example, 2) 74HC165
parallel-in serial-out shift registers. (See Figure 11-15.) The additional inputs are sampled

FIGURE 11-13a

Software for X2444 interface

283

284 | CHAPTER 11

FIGURE 11-13b
continued

DESIGN AND INTERFACE EXAMPLES | 285

FIGURE 11-14
Timing for the X2444 recall instruction

periodically by pulsing the SHIFT/LOAD line low. The data are then read into the 8051
by reading the DATA IN line and pulsing the CLOCK line. Each pulse on the clock line
shifts the data ("down," as shown in Figure 11-15), so the next read to DATA IN reads the
next bit, and so on.

EXAMPLE Design Objective

11.6 Write a subroutine that copies the state of the 16 inputs in Figure 11-15 to 8051 internal
RAM locations 25H and 26H.

The software to accomplish this is shown in Figure 11-16. Note that the main pro-
gram loop consists of calls to two subroutines: GET_BYTES and DISPLAY_RESULTS
(lines 34-35). The latter subroutine is included to illustrate a useful technique for debug-
ging when resources are limited. DISPLAY_RESULTS (lines 72-83) reads the data from
internal locations 25H and 26H and sends each nibble to the console as a hexadecimal
character. This provides a simple visual interface to verify if the program and interface are
working. As input lines are toggled high and low, changes will immediately appear on the
console (if the interface and program are working properly).

The GET_BYTES subroutine (lines 44-58) takes 112 µs to execute when two
74HC165s are used and the system operates from a 12 MHz crystal. If the inputs were
sampled, for example, 20 times per second, GET_BYTES would consume 112 ÷ 50,000 =
0.2% of the CPU's execution time. This would have a minimal impact on the system's re-
sources; however, increasing the number of input lines and/or the sampling rate may start to
impact overall system performance. Consult the software listing for further details.

11.8.2 Using the 8255

The 8255 is a programmable peripheral interface (PPI) IC that can be used to expand the
805l's I/O. The 8255 is a 40-pin IC chip with three 8-bit ports known as Port A, Port B,
and Port C. There are also two active-low input control signals, RD and WR, used to
connect to their 8051 counterparts. Meanwhile, pins D0 to D7 are the data pins used to
connect to the data bus of the 8051.

286 | CHAPTER 11

FIGURE 11-15

Interface to two 74HC165s

FIGURE 11-16a

Software for 75HC165 interface

287

288 | CHAPTER 11

FIGURE 11-16b

continued

Two input control pins. A0 and Al, are used to select specific ports within the 8255
(See Table 11-2.) However, note that if both A0 and Al are set, this does not select a port
but instead selects the control register. The control register is an 8-bit register (See Table
11-3) within the 8255 that is used to specify the mode of operation for all the three ports.
This is similar to the 805l's TMOD and SCON registers, which are used to set the
operating modes of its timers and serial port, respectively.

The 8255 ports can be directed to operate in any one of four modes, but here we will just
use the simplest mode, mode 0 (Basic I/0). This mode sets the ports to provide simple input and
output operations similar to the normal 8051 ports 0 to 3. Other more complex modes allow for
handshaking, which basically allows two devices (in this case the 8051 and the I/O device) to
communicate more intelligently with each other through a series of handshaking signals.

TABLE 11-2

8255 port selection

DESIGN AND INTERFACE EXAMPLES | 289

TABLE 11-3
8255 control register summary

Bit Group Description

D7 A 1 = I/O mode
0 = BSR mode

D6 A Mode selection bit 1
D5 A Mode selection bit 0

00 = mode 0
01 = mode 1

10 = mode 2
11 = mode 3

D4 A Port A.
1 = input
0 = output

D3 A Port C (upper PC7-PC4)
1 = input
0 = output

D2 B Mode selection bit
0 = mode 0
1 = mode 1

D1 B Port B
1 = input
0 = output

D0 B Port C (lower PC3-PC0)

1 = input
0 = output

EXAMPLE Design Objective

11.7 Write a program that reads the status of the eight switches in Figure 11-17 and for
each closed switch, lights the corresponding LED.

Notice that in Figure 11-17, the 8255 has been connected to the 8051 as if it is an

external memory device. This concept of connecting I/O devices (in this case the

8255) as memory is called memory-mapping. This enables the 8051 to address the

ports and control register of the 8A05 as external memory locations. The least two

significant bits of the address bus, Al and A0, have been directly connected to the Al

and A0 inputs of the 8255; hence, they would be used to select a specific 8255 port or

the control register. Meanwhile, address line A8 has been connected to the chip select

(CS) input of the 8255, so an address of the form:

would select the 8255 with the Al and A0 bits selecting a specific port or the control register within

the 8255. Assuming all the x's as 0, then the addresses 0100H, 0101H, and 0102H would select

Ports A, B, and C, respectively, selects the address 0103H selects the control register.

290 | CHAPTER 11

FIGURE 11-17

Interface to an 8255

FIGURE 11-18

Software for 8255 interface

DESIGN AND INTERFACE EXAMPLES | 291

This is a very simple interface example, and the software to do this is given in Figure
11-18. The first step is to select the control register in order to set the mode of operation to 0.
This is followed by sending out the appropriate control word to initialize Port A as input and
Port B as output. Observe that the switches connected to Port A are in direct correspondence
to the LEDs connected to Port B. For example, a closed switch at pin 0 of Port A would give a
low, signaling that we should light the corresponding LED at pin 0 of Port B by sending a
high to that pin. Hence, Port A is first selected and its contents read into the accumulator,
indicating the current status of the switches. Then, all we need to do is to complement the
contents of the accumulator, select Port B, and send the contents of the accumulator out to it.

11.9 RS232 (EIA-232) SERIAL INTERFACE

We have learn that the 8051 consists of a built-in serial port for interfacing to serial I/O de-
vices. In fact, we could also connect the 8051 to the serial port of a personal computer (PC).
The PC's serial port follows the RS232 or EIA-232 serial interface standard and for this rea-
son, a normal RS232 cable can be used to connect between a PC and the 8051. The RS232
cable is terminated at both ends by a connector (called DB-25) with 25 pins. However, since
not all of these pins are used in most PC applications, there is also a different connector ver-
sion called the DB-9 with only nine more commonly used pins. Whether it is DB-25 or DB-9,
the three most important pins are the receive data (RXD), transmit data (TXD), and ground
(GND). The RS232 serial interface also allows for handshaking, where in order to establish a
communications channel, one device initiates by sending the request to send (RTS) signal to
another device and waits for the corresponding clear to send (CTS) signal to be returned.
Upon reception of CTS, the two devices can then communicate messages back and forth.

When connecting the 8051 to the RS232 serial interface, one major concern is the
difference in voltage levels between them. The 8051 uses the TTL voltage levels where a
5V would indicate a high while a DV indicates a low. Meanwhile, for the RS232, a high is
defined as being +3V to +15V while a low is between -5V to -15V. Because of this
difference, connections between the 8051 and the RS232 have to be done through line
drivers. Line drivers basically function to convert between the two different voltage levels
so that a high or low as understood by the 8051 also means a high or low to the RS232 and
vice versa. Figure 11-19 shows how the 8051 is connected to the RS232 serial interface via
RS232 line drivers such as the 1488/1489.

FIGURE 11-19
Interface to RS232

292 | CHAPTER 11

EXAMPLE Design Objective
11.8 The 8051 is connected to the PC through the RS232 serial interface. Write a program that

inputs decimal numbers from the PC attached to the 8051 serial port, and sends the corre-
sponding ASCII code out to the screen.

The software for this is shown in Figure 11-20. First, the FACE subroutine is
called for initializing the serial port and to perform the handshaking with the serial in-
terface before an initial message is transmitted. For this purpose, the serial port is set
for mode 1, 8-bit UART and the corresponding baud rate to 9600 baud. The RTS
signal is then asserted and the 8051 waits for the acknowledging CTS signal from the
serial interface. Only when CTS is detected will an initial message be sent out through
the serial port.

FIGURE 11-20a

Software for RS232 interface

DESIGN AND INTERFACE EXAMPLES | 293

FIGURE 11-20b

continued

The program then calls INCHAR to wait for decimal numbers from the serial interface.

Once an incoming number is detected, the corresponding ASCII code is retrieved from a lookup
table and subsequently sent out through the serial port by calling the OUTCHR subroutine.

294 | CHAPTER 11

TABLE 11-4
DB-25 Centronics parallel interface pins

11.10 CENTRONICS PARALLEL INTERFACE

The most common printer interface is the Centronics parallel interface. This has become
the de facto standard for parallel interface, just like its RS232 counterpart in the previous
section. The Centronics parallel interface specifies 36 signals. This interface can either be
terminated by a 36-pin Centronics connector, or even a DB-25 connector, as is more com-
mon on most PCs nowadays. (See Table 11-4.) In this section, we will see how to connect
the 8051 to a printer through the DB-25 Centronics parallel interface.

The Centronics parallel interface consists of eight data pins to carry a byte of data for

printing. When a byte of data has been made available at these data pins, the 8051 sends a

STROBE signal that allows the 8051 to inform the printer that data is available at its data

pins. If the printer is not busy, it would send a corresponding ACK signal to indicate that it

has successfully processed the print request. Otherwise, a BUSY signal would be sent instead.

EXAMPLE Design Objective

11.9 Write a program to query the printer and then continually send a test message to it for printing.

Figure 11-21 shows the connection of the 8051 to a printer via the Centronics parallel

interface. The corresponding software is given in Figure 11-22. The program first activates the

STROBE signal to the printer and then checks the status of the printer to ensure that it is not

busy (BUSY = 0), that there is still paper (PAPER END = 0), that it has been selected (SLOT

= 1), and that there is no error (ERROR = 1). If any of the conditions are

FIGURE 11-21

Interface to Centronics parallel interface

FIGURE 11-22a

Software for Centronics parallel interface

295

296 | CHAPTER 11

FIGURE 11-22b

continued

not satisfied, an error message is generated and the program ends. Otherwise, the 8051 waits

for the printer's ACK signal before it proceeds. Once the ACK signal is activated, the cur-

rent character is obtained from the test message and sent to the printer's data pins via P1.

11.11 ANALOG OUTPUT

Interfacing to the real world often requires generating or sensing analog conditions. Gen-
erating and controlling an analog output signal from a microcontroller is easy. This design
example uses two resistors, two capacitors, a potentiometer, an LM301 op amp, and
MC1408L8 8-bit digital-to-analog converter (DAC). Both ICs are inexpensive and readily
available. The eight data inputs to the DAC are driven from Port 1 on the 8031 (see Figure
11-23). After building the circuit and connecting it to the SBC-51, it should be tested using
monitor commands. Measure the output voltage at pin 6 of the LM301 (Vo)

DESIGN AND INTERFACE EXAMPLES | 297

while writing different values to Port 1 and adjusting the 1K potentiometer. The output
should vary from 0 volts (P1 = 00H) to about 10 volts (P1 = 0FFH).

Once the circuit is operating correctly, we are ready to have fun with the interface
software. The usual test program is a sawtooth waveform generator that sends a value to
the DAC, increments the value, sends it again, and so on (see question 3 at the end of this
chapter). However, we will embark on a much more ambitious design—a digitally
controlled sine wave generator.

EXAMPLE Design Objective
11.10 Write a program to generate a sine wave using the DAC interface in Figure 11-23. Use a

constant call STEP to set the frequency of the sine wave. Make the program interrupt
driven with an update rate of 10 kHz.

Since the number-crunching capabilities of the 8031 are very limited, the only rea-
sonable approach to this problem is to use a look-up table. We need a table with 8-bit
values corresponding to one period of a sine wave. The values should start around 127,
increase to 255, decrease through 127 to D, and rise back up to 127, following the pattern
of a sine wave.

A reasonable rendition of a sine wave requires a relatively large table; so the ques-
tion arises, how do we generate the table? Manual methods are impractical. The easiest

FIGURE 11-23
Interface to MC1408L8

298 | CHAPTER 11

FIGURE 11-24

Software to generate a sine wave table

approach is to write a program in some other high-level language to create the table and
save the entries in a file. The table is then imported into our 8031 source program, and off
we go. Figure 11-24 is a simple C program called table51.c that will do the job for us. The
program generates a 1024-entry sine wave table with values constrained between 0 and
255. The output is written to an output file called sine51.src. Each entry is preceded with
"DB" for compatibility with 8031 source code.

The 8031 sine wave program is shown in Figure 11-25. The main loop (lines 36-
40) does three things: initializes timer 0 to interrupt every 100 s, turns on interrupts,
and sits in an infinite loop. The timer 0 interrupt service routine (lines 41-51) does all the
work. Every 100 µs a value is read from the lookup table using the DPTR and then
written to port 1. A constant called STEP is used as the increment through the table.
STEP is defined in line 26 as a byte in internal RAM. It must be initialized using a
monitor command. Within each ISR, STEP is added to DPTR to get the address of the
next sample. The table is ORGed at 8400H (line 69), so it starts on an even 1K bound-
ary. If the DPTR is incremented past 87FFH (the end of the table), it is adjusted to wrap
around through the beginning of the table. Since the table is so big, a $NOLIST as-
sembler directive was used after the first five entries (line 77) to shut off output to the

FIGURE 11-25a

8031 Sine wave program

299

300 | CHAPTER 11

FIGURE 11-25b

continued

listing file. A $LIST directive was used in line 1092 (not shown) to turn the listing
back on for the last five entries. The frequency of the sine wave is controlled by three
parameters: STEP, the size of the table, and the timer interrupt period, as explained in
lines 16-20 of the listing.

11.12 ANALOG INPUT

Our next design example is an analog input channel. The circuit in Figure 11-26 uses one
resistor, one capacitor, a trimpot, and an ADC0804 analog-to-digital converter (ADC). The
ADC0804 is an inexpensive ADC (National Semiconductor Corp.) that converts an input
voltage to an 8-bit digital word in about 100 µs.

The ADC0804 is controlled by a write input (WR) and an interrupt output (INTR)

A conversion is started by pulsing WR low. When the conversion is complete (100 ms

later), the ADC0804 asserts INTR , making it low. INTR is de-asserted (high) on the

next 1-to-0 transition of WR, which initiates the next conversion. INTR and WR connect

to the 8031 lines P1.1 and P1.0, respectively. For this example, we use Port A of the 8155

for the data transfer, as shown in the figure.
The ADC0804 operates from an internal clock created by the RC network con-

necting to pins 19 and 4. The analog input voltage is a differential signal applied to the
Vin(+) and Vin(-) inputs on pins 6 and 7. For this example Vin(-) is grounded and Vin(
+) is driven from the center tap of the trimpot. Vin(+) will range from 0 to +5 volts, as
controlled by the trimpot. Consult the data sheet for a detailed description of the operation
of the ADC0804.

DESIGN AND INTERFACE EXAMPLES | 301

FIGURE 11-26
Interface to ADC0804 ADC

EXAMPLE Design Objective

11.11 Write a program to continually sense the voltage at the trimpot's center tap (as converted
by the ADC0804). Report the result on the console as an ASCII byte.

The program in Figure 11-27 achieves the objective stated above. Since the 8155

ports default to input upon reset, an initialize sequence is not necessary. Port A is at

address 0101H in external memory and is easily read using a MOVX instruction. A

conversion is started by clearing and setting P1.0 (lines 34-35), the ADC0804's WR

input. Then, the program sits in a loop waiting for the ADC0804 to finish the conversion

and assert INTR at P1.1 (line 36). The data are read in lines 37 and 38 and then sent to

the console, using MON51's OUT2HX subroutine (line 39). As the program runs, a byte is

displayed on the console. It will range from 00H to 0FFH as the trimpot is adjusted.
The program in Figure 11-27 is a rough first approximation of the potential for ana-

log input. It is possible to replace the trimpot with other analog inputs. Temperature sens-
ing is achieved using a thermistor—a device with a resistance that varies with
temperature. Speech input is possible using a microphone. The ADC80804's conversion
period of 100 µs translates into a sampling frequency of 10 kHz. This is sufficient to
capture signals with up to 5 kHz bandwidth, roughly equivalent to a voice-grade
telephone line. Additional circuitry is required to boost the low-level signals provided by
typical microphones to the 0-5 volt range expected by the ADC0804. Additionally, a
sample-and-hold circuit is needed to maintain a constant voltage for the duration of each
conversion. We'll leave it to the reader to explore these possibilities.

FIGURE 11-27

Software for ADC0804 interface

302

DESIGN AND INTERFACE EXAMPLES | 303

11.13 INTERFACE TO SENSORS

In Chapter 6's section on external interrupts, an example was given on the furnace controller that
makes use of a simple temperature sensor. In this section, we will look at a more complex
temperature sensor, the DS1620 digital thermometer and thermostat, manufactured by Maxim.2

The DS1620 is an 8-pin IC with three thermal alarm outputs, THIGH, TLOW, and TCOM.
THIGH goes high if the measured temperature is greater than or equal to the user-defined high
temperature, TH. On the other hand, TLOW goes high if the temperature is less than or equal to
the user-defined low temperature, TL. In contrast, TCOM goes high when the temperature
exceeds TH and only returns low when the temperature is less than TL.

To use the DS1620 along with the 8051, the DS1620 has to be configured for 3-wire
communications. This is so called due to the fact that the communication between them is
done through a group of three wires, namely the data input/output (DQ) pin, the clock input
(CLK/CONV) pin, and the reset input (RST) pin. Communication is initiated by setting the
RST, and as clock signals are sent to the DS1620 through the CLK pin, data would be
clocked in or out through the DQ pin, with the LSB sent first.

Figure 11-28 shows the connections between the 8051 and the DS1620. Interacting
with the DS1620 requires the 8051 to issue commands (see Table 11-5) to it.

FIGURE 11-28
Interface to DS1620

TABLE 11-5
DS1620 command set

2Maxim Integrated Products, Inc., 120 San Gabriel Drive, Sunnyvale, CA 94086.

304 | CHAPTER 11

EXAMPLE Design Objective

11.12 Write a program that uses a temperature sensor to keep the room temperature at 20°C. If the
temperature drops below 17°C, turn on the furnace. If the temperature exceeds 23°C, turn off
the furnace.

The software for this is shown in Figure 11-29. The furnace is first turned off and the
DS1620 is initialized. This requires sending the command 'write config' to the DQ pin, fol-
lowed by a byte of configuration code for the configuration/status register (see Table 11-6). In
our example, we set the configuration code such that the CPU bit is 1, selecting the DS1620
for 3-wire operation with the 8051. Also, the DS16290 is selected for continuous temperature
conversion (sensing) by clearing the 1 shot bit to 0. Note that both sending the command byte
and the configuration code is done by the SEND subroutine, which sends them bit by bit, LSB
first to the DQ pin. Prior to the sending of any command to the DS1620,

FIGURE 11-29a

Software for interface to DS1620

DESIGN AND INTERFACE EXAMPLES | 305

FIGURE 11-29b
continued

306 | CHAPTER 11

TABLE 11-6
DS1620 configuration/status register

transfer has to be initiated by raising RST to high. When the command has been sent, the
transfer is stopped by clearing RST.

After the 'write config' command, the user-defined high temperature, TH, and the user-
defined low temperature, TL, is set. Next, a 'start convert' command is issued to direct the
DS1620 to start sensing the temperature. The 8051 then waits in an indefinite loop on the
status of the THIGH and TLOW outputs and turns the furnace on or off correspondingly.

11.14 INTERFACE TO RELAYS

A relay is a switch whose contacts are opened or closed due to a magnetic field produced by
the application of electricity to it. In essence, relays can be thought of as magneto-mechanical

FIGURE 11-30
Internal connections for G6RN

DESIGN AND INTERFACE EXAMPLES | 307

switches and are very useful in applications where it is desired that the opening and closing
of switches be controlled electrically.

For the example in this section, we will use the OMRON's3 single pole double throw
(SPDT) relay model G6RN whose internal connections are as shown in Figure 11-30.

EXAMPLE Design Objective

11.13 Consider a simple pedestrian traffic light system illustrated in Figure 11-31. Design such
a traffic light system using the 8051 and a relay to control it.

The schematic diagram showing the connections between the 8051, relay, pedestrian
buttons and traffic light LEDs are given in Figure 11-32. The program listing for

FIGURE 11-31
A pedestrian light system4

3OMRON Corporation, 28th Fl., Crystal Tower Bldg., 1-2-27, Shiromi, Chuo-ku,Osaka 540 Japan.
4Thanks to Joseph, Ken, and Tonny for undertaking this project and for generating the graphics in Figure 11-31.

308 | CHAPTER 11

FIGURE 11-32
Interface to G6RN: Pedestrian Light System

the corresponding software is in Figure 11-33. The main program enables the relevant
interrupts and waits until a pedestrian pushes a button (B1 or B2 depending on which side
of the road he or she is on). Initially, port 1.0 is LOW, and the pole within the relay causes
the GREEN traffic light and RED pedestrian light to be on. Once a button is pressed, this
generates an interrupt INT0 to the 8051, which calls the corresponding interrupt service
routine EX0ISR, the main bulk of the program. Within this ISR, port 1.0 is set, causing

FIGURE 11-33a

Software for interface to the G6RN

DESIGN AND INTERFACE EXAMPLES | 309

FIGURE 11-33b

continued

310 | CHAPTER 11

the relay's pole to change to its other contact, hence turning on the RED traffic light and
the GREEN pedestrian light. A delay of 10 seconds then passes, allowing the pedestrians
to cross the road before everything returns to normal and the GREEN traffic light and
RED pedestrian light are turned on again.

11.15 STEPPER MOTOR INTERFACE

Various devices such as the dot-matrix printer and the floppy disk drive make use of a
special type of motor called the stepper motor. Unlike the conventional DC motor, a
stepper motor moves in precise increments or steps. This allows for it to be used in
applications that require exact positioning of mechanical parts.

Let's briefly review the basic operation of a stepper motor. A stepper motor has a
moving part called the rotor that is typically made from permanent magnet material. This
rotor is surrounded by the stator, which is an electromagnet made up of two windings
around some conducting poles. This is shown in more detail in Figure 11-34.

Notice that both the two windings have a center tap, COM, which is typically con-
nected to +5V. Consider next one of these windings shown oriented vertically in Figure
11-34(a), with its two ends denoted by A and B. This vertical winding will be wound
round the up and down stator poles, as shown in Figure 11-34(b). The two ends A and B
will be alternatively energized, causing current to flow through either one of them and
hence turning the stator pole into an electromagnet to attract the rotor magnet in the
middle to move in the desired direction. Figure 11-34(b) also shows that the stator A has
been energized to attract the rotor magnet towards it in the indicated direction. In the
similar way, the horizontal windings' two ends, C and D, would be wound round the left
and right stator poles, and these will be alternately energized as well.

A further illustration of the interaction between the rotor and the stator is given in
Figure 11-35. Suppose that stator A is first energized and hence becomes an electromagnet
to attract the rotor, as shown in Figure 11-35(a). Next, stator D is energized and attracts

FIGURE 11-34

Configuration of the stator windings of a stepper motor

DESIGN AND INTERFACE EXAMPLES | 311

FIGURE 11-35

Rotating the rotor of the stepper motor

the rotor towards it, as in Figure 11-35(b). This is followed by energizing stator B, again
attracting the rotor as in Figure 11-35(c). Finally, stator C is energized and similarly at-
tracts the rotor. The energizing of the stators in the sequence A, D, B, C causes the rotor to
rotate in clockwise direction to complete one revolution, or the rotor is said to have made
a 360° clockwise rotation. In contrast, if the stators are energized in the opposite sequence,
the rotor would make a counterclockwise rotation.

Notice that the rotor, when operated in this way, moves to four unique positions as
it steps to one full rotation, where each step involves a rotation of 90°. A stepper motor of
such type is called a 4-step stepper motor. For finer resolutions, 8-step stepper motors
can be used, where a step makes a rotation of 45. This is achieved for example by
energizing the stator poles not only one at a time but alternatively energizing two adjacent
stators at a time. For example, to rotate the stepper motor clockwise, we energize the
stator poles according to the sequence A, AD, D, DB, B, BC, C, CA. The first three steps
are illustrated in Figure 11-36.

FIGURE 11-36

Half-step rotation of the stepper motor

312 | CHAPTER 11
The connection from the 8051 to the windings of the stepper motor has to be made
through a stepper motor driver as the currents from the 8051 port pins are insufficient to
drive the windings. Figure 11-37 shows how the ULN2003 stepper motor driver interfaces
the 8051 to the stepper motor.

With the connections in Figure 11-37, it is clear that to energize a stator pole, a high '1'
has to be written to the corresponding port pin connected to it, allowing current to flow through
the stator windings thus turning it into an electromagnet. The sequence of steps for both the 4-
step and 8-step stepper motors are given in Table 11-7 and Table 11-8, respectively.

TABLE 11-7

Full-step 4-step sequence for clockwise rotation

TABLE 11-8
Half-step 8-step sequence for clockwise rotation

FIGURE 11-37

Interface to the stepper

motor

DESIGN AND INTERFACE EXAMPLES | 313

EXAMPLE Design Objective
11.14 Write a program to initially rotate the stepper motor clockwise. If a switch connected to

INT0 makes a high-to-low transition, change the direction of rotation, in this case it be-
comes counterclockwise.

The software for this is shown in Figure 11-38. Since the external interrupt 0 (INT0)

is used to detect the high-to-low transition, a relevant ISR for INT0 is included as part of

FIGURE 11-38a
Software for stepper motor interface

FIGURE 11-38b

continued

314

DESIGN AND INTERFACE EXAMPLES | 315

the program such that the direction bit, D, is complemented at every occurrence of a high-

to-low transition at INT0 . There are also two functions, CW and CCW, to cause the step-

per motor to rotate clockwise and anticlockwise, respectively, plus a simple subroutine

that generates a delay of 1 second.
The main program initially directs the stepper motor to rotate in a clockwise fashion.

Upon completion of one cycle of rotation, the current direction is checked by referring to
D, and then either CW or CCW would be called to continue rotating the stepper motor in
the direction indicated by D.

SUMMARY

This concludes our examination of interface examples. The designs presented illustrate many
of the concepts required to implement sophisticated interfaces using an 8051 microcontroller.

There is no substitute for hands-on experience, however. The examples in this chapter,
and those presented earlier, are best understood through a trial-and-error process. Implement-
ing the examples on a real system, such as the SBC-51, is the best way to develop the concepts
presented in this book. This book has provided a basis for students to explore further the pos-
sibilities of using a microcontroller such as the 8051 in minimum component designs.

PROBLEMS

11.1 Use the loudspeaker interface in Figure 11-9 to repeatedly play the musical melody
shown in Figure 11-39.

11.2 Reconfigure the 74HC165 interface in Figure 11-15 and rewrite the accompanying
software in Figure 11-16 to use the 8051's serial port (in mode 0) for the clock and data
lines.

11.3 If the following program is used with the digital-to-analog output circuit in Figure 11-
23, a sawtooth wave results. (Assume 12 MHz operation.)

STEP EQU 1

MAIN MOV P1,A

ADD A,#STEP

SJMP MAIN

FIGURE 11-39
Musical melody for Problem 11.1

316 | CHAPTER 11

a. What is the frequency of the sawtooth wave?
b. What value for STEP will achieve an output frequency of 10 kHz (approximately)?
c. Derive the equation for frequency, given STEP.

11.4 Several of the programs in this chapter used MON51 subroutines. If a program is
to use the subroutine ISDIG (to check if a byte is an ASCII digit), what address
from MON51 must be equated to the symbol ISDIG?

11.5 Write a program to create a 1 kHz square wave on P1.7 using the 8155 timer and
external 0 interrupts. (Hint: consult an 8155 data sheet.)

11.6 Assume the 74HC165 interface in Figure 11-15 is expanded to 6 ICs, providing 48
additional input lines.
a. How should the program in Figure 11-16 be modified to read the 48 input lines?
b. Where will the data be stored in the 8031's internal RAM?
c. What is the new duration of the GET_BYTES subroutine in Figure 11-16?
d. If GET_BYTES is placed in an interrupt service routine that executes every

second, what percentage of the CPU's execution time is spent reading the
48 inputs from the 74HCl65s?

11.7 In Figure 11-25, the constant STEP was defined as a byte of internal data at
location 50H using the following assembler directive:

STEP DATA 50H

This is the correct way to define STEP; however, the following would also work:

STEP EQU 50H

In the latter case, type-checking is not performed by ASM51 when the program is
assembled. Give an example of an incorrect use of the label STEP that would not
generate an assemble-time error if STEP were defined with EQU, but would
generate an error if STEP were defined properly, using DATA.

11.8 Suppose a 16-key HEX keypad has been connected to the 8051 as shown in Figure
11-40. The columns are numbered from left to right, starting from 0, while the
rows are numbered from up to down, also starting from 0. Suppose that when a
key-press is detected, the HIT subroutine is called, and R6 contains the column in-
formation and the upper 4 bits of P1 contain the row information, where

Write the subroutine HIT that uses the values in R6 and P1 to output the value of the
key pressed. Show your steps.

DESIGN AND INTERFACE EXAMPLES | 317
FIGURE 11-40
11.9 Rewrite

to the 80

11.10 We have
8255 and
those mo

11.11 Compare
differenc
and mode

11.12 Write the

11.13 Research
specific e

HEX keypad
the software for the LCD in Figure 11-8 to continually display the message "Welcome

51 Microcontroller Experience. Hope you enjoy your reading adventure."

seen how to use the 8255 in mode 0. Research on the more complex modes of the
hence write the assembly language instructions to initialize the 8255's ports to each of

des.

between the serial and parallel interface. What in your opinion is the most significant
e? Hence why do you think serial interfaces are commonly used with keyboards, mice,
ms while parallel interfaces are used with printers?
corresponding pseudo code for the pedestrian traffic light software in Figure 11-33.

the types and applications of stepper motors. Select three such applications and give
xplanations as to why the stepper motor is used in each of them.

318 | CHAPTER 11

Write the subroutine HIT that uses the values in R6 and P1 to output the value of the
key pressed. Show your steps.

Design and Interface
Examples in C

12.1 INTRODUCTION

In the previous chapter, several design and interface examples involving the 8051 were
presented, with the corresponding interface programs written in assembly language. This
chapter will tackle these interface problems by writing similar proof-of-concept programs
in 8051 C. This will give a clearer view on the difference and also the similarities between
the two languages that we use to interact with the 8051.

12.2 HEXADECIMAL KEYPAD INTERFACE

Recall from the discussion of the previous chapter the hexadecimal keypad interface
where the design objective was to write a program to continually read hexadecimal
characters from the 4 x 4 keypad and echo the corresponding ASCII code to the console. A
similar 8051 C program is shown in Example 12.1.

EXAMPLE Hexadecimal Keypad Interface
12.1 Rewrite in C language the software for the hexadecimal keypad interface in Figure 11-4.

Solution

#include <reg51.h>
#include <stdio.h>

unsigned char R3, R5, R6, R7, tempA;
unsigned char bdata A; /* represents ACC */
sbit aMSB = A^7; /* variable aMSB to refer to

A.7 */

319

sbit aLSB = A^0; /* variable aLSB to refer to
A.0 */

bit PY; /* represents parity bit */
void IN_HEX(void);
void HTOA(void);
void OUTCHR(void); /* taken & modified from

Example 8-6 */
bit GET_KEY(void);
void RL_A(void);
bit RRC_A(bit);
void PARITY(void);

main()

{
while (1) /* repeat forever */

{
IN_HEX(); /* get code from keypad */
HTOA(); /* convert to ASCII */
OUTCHR(); /* echo to console */

}
}

void IN_HEX(void)

{
R3 = 50; /* debounce count */

while (R3 != 0)

{
if (GET_KEY() == 0) /* key pressed? */

R3 = 50; /* no: check again */

else
R3--; /* yes: repeat 50 times */

}

tempA = A; /* save hex code */
R3 = 50; /* wait for key up */
while (R3 != 0)

{
if (GET_KEY() == 1) /* key pressed? */

R3 = 50; /* yes: keep checking */
else

R3--; /* no: repeat 50 times */

}
A = tempA; /* recover hex code and return

*/

}

bit GET_KEY(void)

{
bit C = 0; /* default return value: no key

press */

320 | CHAPTER 12

DESIGN AND INTERFACE EXAMPLES IN C | 321

A = 0xFE; /* start with column 0 */

for (R6 = 4; R6 > 0; R6--) /* check all 4 columns */
{
P1 = A; /* activate column line

*/
A = P1; /* read back Port 0 */
tempA = A&(0xF0); /* isolate row lines */
if (tempA == 0xF0) /* row lines active? */

RL_A(); /* no: move to next
column line */

else
{
R7 = A; /* save in R6 */
A = 4; /* prepare to calculate

col. weighting */
C = 0;
A = A - R6; /* 4 - R6 = weighting */
R6 = A; /* save in R6 */
A = R7; /* restore scan code */
A = (R7 << 4 | R7 >> 4);/* put in low nibble */

for (R5 = 4; R5 > 0; R5--)/* use R5 as counter
*/ {

C = RRC_A(C); /* rotate ACC until 0 */
if (C == 0)

break; /* done when C = 0 */
else

R6 = R6 + 4; /* add 4 until row found
*/

}
C = 1; /* key pressed! */
A = R6; /* code in ACC */
return C;
}

}
return C;
}

void RL_A(void)
{
bit tempBit;
tempest = aMSB; /* backup MSB of A */
A = A << 1; /* rotate A left */
aLSB = tempBit;
} /* rotate aLSB into MSB */

bit RRC_A(bit C)

{
bit tempBit;

tempBit = C; /* backup C */

322 | CHAPTER 12
C = aLSB; /* rotate A.0 into C */
A = A >> 1; /* rotate A right */
aMSB = tempBit; /* rotate C into A.7 */
return C; }

void HTOA(void)
{
A = A & 0xF; /* ensure upper nibble clear */
if (A >= 0xA) /* 'A' to 'F'? */

A = A + 7; /* yes: add extra */
A = A + '0'; /* no: convert directly */
}

void OUTCHR(void)
{
PARITY(); /* get even parity of A and put

in PY */
PY = !PY; /* change to odd parity */
aMSB = PY; /* add to character code */
while (TI != 1); /* Tx empty? no: check again */
TI = 0; /* yes: clear flag and */
SBUF = A; /* send character */
aMSB = 0; /* strip off parity bit */
}

void PARITY(void)
{
int i;
PY = 0; /* initialize parity to 0 */
for (i = 0; i < 8 ; i++) /* calculate parity of A*/

PY ^= (A >> i) & 1;
}

Discussion

Recall that registers R0 to R7 are used for storing parameters in C functions. For this rea-
son, it is often not advisable to use these registers for temporary storage when programing
the 8051 in C. Instead, simply declare any 8-bit variable for this purpose. Notice also that
in our example above, we intentionally named the temporary variables with the register
names R3 to R7 so that it is easier to relate our C program to the assembly language coun-
terpart in Figure 11-4.

Due to the same reason, the accumulator, ACC, is used in most operations and hence is
often overwritten with data, so should not be used in your C programs. In our above example,
we used a temporary bit-addressable variable A to represent the accumulator.

Since we do not use the ACC but use a representative, A, instead, the parity of A
would not be automatically updated in the parity flag, P. Instead, we would need to
compute it on our own. Therefore, we slightly modified OTCHR() to include the calling
of a function PARITY() that computes the parity of A and stores it in a bit, PY.

DESIGN AND INTERFACE EXAMPLES IN C | 323

In our solution, we also included two functions, RL_A() and RRC_A(), which
basically work in the same way as the assembly language instructions RL A and RRC A.

We had to do this in C since no such C statements or functions support rotations. In C,
only shift operations (denoted by <<) are supported.

12.3 INTERFACE TO MULTIPLE 7-SEGMENT LEDS

In Chapter 11, an assembly language program to interface the 8051 to multiple 7-segment
LEDs was presented. Specifically, the program was to copy BCD digits stored in internal
RAM locations 70H to 71H, and send them to the LED display 10 times per second using
interrupts. What follows will be a rough outline of a possible program written in C. It is
left to the reader to fine-tune and adapt it according to his individual preferences.

EXAMPLE Interface to Multiple 7-Segment LEDs

12.2 Rewrite in C language the software for the multiple 7-segment LED interface in Figure 11-6.

Solution

#include <reg5l.h>
#include <stdio.h>

unsigned char bdata A; /* represents ACC */

int xdata * idata DPTR; /* DPTR in idata, points to
xdata */

sbit DIN = P1^0; /* MC14499 interface lines */
sbit CLOCK = P1^6;
sbit ENABLE = P1^5;
sbit aLSB = A^0;
sbit aMSB = A^0;

int xdata X8155 = 0x100; /* 8155 address */

int xdata TIMER = X8155 + 4; /* timer registers */
int count = 4000; /* interrupts @ 2000 ps */
unsigned char mode = 0x40; /* timer mode hits */

int digits, icount;
unsigned char tempA;

void UPDATE(void);
void OUT8(void);
bit RLC_A(bit);

main()

{
DPTR = TIMER; /* initialize 8155 timer */
A = 0xA0; /* low byte of count for 500 Hz

square wave */
DPTR[TIMER] = A;
TIMER++;

A = 0xF; /* high byte of count */
DPTR[TIMER] = A;

324 | CHAPTER 12

A = 0xC0; /* start timer command */
DPTR[X8155] = A; /* send to 8155 command register */
icount = 50; /* initialize int. counter */
EA = 1; /* enable interrupts */
EX0 = 1; /* enable external 0 interrupt */
IT0 = 1; /* negative-edge triggered */

while(1); /* do nothing */
}

void EX0ISR(void) interrupt 0

{

if (--icount == 0) /* on 50th interrupt */

{
icount = 50; /* reset counter and */
UPDATE(); /* refresh LED display */
}

}

void UPDATE(void)
{
tempA = A; /* save A */
ENABLE = 0; /* prepare MC14499 */
A = digits; /* get first two digits */
OUT8(); /* send two digits */

A = digits + 1; /* get second byte */
OUT8(); /* send last two digits */
ENABLE = 1; /* disable MC14499 */

A = tempA; /* restore A */

}

void OUT8(void) using 0
{
for (tempA = 8; tempA > 0; tempA--)

{
CY = RLC_A(CY); /* put bit in C flag */

DIN = CY; /* send it to MC14499 */

CLOCK = 0; /* 3 ps low pulse on clock line */

CLOCK = 1;

}

}

bit RLC_A(bit C)
{
bit tempBit;

tempBit = C; /* backup C */
C = aMSB; /* shift A.0 into C */
A = A << 1; /* shift A left */

aLSB = tempBit; /* shift C into A.0 */
return C;

}

DESIGN AND INTERFACE EXAMPLES IN C | 325

Discussion

In the 8051, the DPTR is used as a pointer to point to external memory locations. In order
to directly relate our C program to its assembly language counterpart, we use the declara-
tion int xdata * idata DPTR to mean that the DPTR is a 16-bit pointer stored in idata
memory (where SFRs are located) which points to a location in xdata memory. In as-
sembly language, elements in lookup tables are obtained by the instruction MOV @DPTP,A

or MOVC @DPTP,A, where the DPTR holds the base (starting) address of the table while
A is the index to a specific element. The situation is similar in C. A pointer, which we can
call DPTR, can be used to point to the Hirst element of an array (which is the C equivalent
of a lookup table). Then, the statement DPTR[A] would refer to a specific element in the
array, where A is the index.

12.4 INTERFACE TO LIQUID CRYSTAL DISPLAYS (LCDS)

Section 11.5 presented an interface example involving an LCD. The program that was
written continually retrieved ASCII characters from internal RAM locations 30H-7FH and
displayed them on the LCD, 16 characters at a time. The same program, rewritten in C, is
shown in Example 12.3.

EXAMPLE Interface to LCDs

12.3 Rewrite in C language the software for the LCD interface in Figure 11-8.

Solution

#include <reg51.h>
#include <stdio.h>

sbit PS = P3^0;
sbit RW = P3^1;
sbit E = P3^2;
sbit busy = P1^7;
unsigned char bdata A; /* represents ACC */
unsigned char * ptr;
unsigned char count;
void INIT(void);
void NEW(void);
void DISP(void);
void WAIT(void);
void OUT(void);

main()
{
INIT(); /* initialize LCD */
count = 16; /* initialize character count */
while(1)

{
for (ptr = 0x30; ptr < 0x80; ptr++, count--)
}

326 | CHAPTER 12

A = *ptr; /* get next character */
DISP(); /* display on LCD */
if (count==0)

{
count = 16; /* if end of line, reinitialize count */
NEW(); /* and refresh LCD */
}

}
}

}

void INIT(void)

{
A= 0x38; /* 2 lines, 5 X 7 matrix */
WAIT(); /* wait for LCD to he free */
RS = 0; /* output a command */
OUT(); /* send it out */
A = 0x0E; /* LCD on, cursor on */
WAIT(); /* wait for LCD to he free */
RS = 0; /* output a command */
OUT(); /* send it out */
NEW(); /* refresh LCD display */
}

void NEW(void)
{
A = 0x80; /* clear LCD */
WAIT(); /* wait for LCD to he free */
RS = 0; /* output a command */
OUT(); /* send it out */

A = 0x80; /* cursor: line 1, position 1 */
WAIT(); /* wait for LCD to he free */
RS = 0; /* output a command */
OUT(); /* send it out */
}

void DISP(void)
{
WAIT(); /* wait for LCD to be free */
RS = 1; /* output a data */
OUT(); /* send it out */
}

void WAIT(void)
{
do

{
RS = 0; /* command */

RW = 1; /* read */
busy = 1; /* make busy bit = input */

DESIGN AND INTERFACE EXAMPLES IN C | 327

E = 1; /* l-to-0 transition to */
E = 0; /* enable LCD */
}

while (busy); /* if busy, wait */

}

void OUT(void)

{

P1 = A; /* get ready output to LCD */
RW = 0; /* write */

E = 1; /* l-to-0 transition to */
E = 0; /* enable LCD */
}

Discussion

In this example, we need to access some consecutive internal RAM locations. In assembly
language, this would be done via indirect addressing. In C, we make use of pointers and
since the pointed locations should be in internal RAM, our pointer, say ptr should be de-
fined with the statement unsigned char data * ptr. We use unsigned char here
since memory locations contain 8-bit values. The rest of the program is straightforward.

12.5 LOUDSPEAKER INTERFACE

Recall that in Section 11.6 in the previous chapter, an interrupt-driven assembly language
program to continually play an A-major musical scale was presented. The following
Example 12.4 shows the corresponding program in C.

EXAMPLE Loudspeaker Interface

12.4 Rewrite in C language the software for the loudspeaker interface in Figure 11-10.

Solution

#include <reg51.h>
#include <stdio.h>

#define LENGTH 12

sbit outbit = P1^7;

int reload; /* use this to temporarily store the
reload */

/* value for the current note */
int code * PC; /* PC points to the TABLE */
int REPEAT = 5; /* reload value = -50000 causes 0.05

sec per */

/* timeout. Do 5 times, to get 5 x
0.05 */

/* = 0.25 seconds per note */
int ncount, tcount; /* note counter & timeout counter */

328 | CHAPTER 12

int i, j;
/* look-up table of notes in A

major scale */
int code TABLE[LENGTH] = {-1136, -1136, -1012, -902, -851,

758, -676,
-602, -568, -568, -568, -568};

void GETVAL(void);
main()
{
TMOD = 0x11; /* both timers 16-bit mode */
ncount = 0; /* initialize note counter to 0 */
tcount = REPEAT; /* initialize timeout counter to 5

*/

IE = 0x8A; /* timer 0 & 1 interrupts on */
TF1 = 1; /* force Timer 1 interrupt */
TF0 = 1; /* force Timer 0 interrupt */
while(l); /* ZzZzZzZz time for a nap */
}

void T0ISR(void) interrupt 1

{
TR0 = 0; /* stop timer */
TH0 = 0x3C; /* HIGH(-50000) */
TL0 = 0xB0; /* LOW(-50000) */
if (--tcount == 0)

{
tcount = REPEAT; /* if 5th int, reset */
ncount++; /* increment note */
if (ncount == LENGTH) /* if beyond last note... */

ncount = O; /* reset, A = 440Hz */
}

TR0 = 1; /* start timer, go hack to ZzZzZzZ

*/
}

void T0ISR(void) interrupt 3
{
outbit = !outbit; /* music maestro! */
TR1 = 0; /* stop timer */
reload = ncount; /* get note counter */
GETBYTE(); /* get 2 bytes of reload value */
TH1 = reload >> 8; /* put high byte in timer high

register */
TL1 = reload & 0xFF; /* put low byte in timer low

register */
TR1 = 1; /* start timer */
}

void GETVAL(void) /* tahle look-up function */

DESIGN AND INTERFACE EXAMPLES IN C | 329

{
PC = TABLE; /* point to TABLE */
reload = PC[reload]; /* read from TABLE into reload */

}

Discussion

The assembly language solution in Figure 11-10 uses a lookup table in code memory. To do
the same thing in C, we use an array that is stored in code memory. In our solution above,
this array is called TABLE. The task of obtaining elements from this array is performed by
a function GETVAL() that makes use of a pointer PC to access the array elements. Notice
that in contrast to the assembly language solution in Figure 11-10, we do not have to read
from the table two times. This is because in C, you can define lookup tables with 16-bit el-
ements to store each reload value as an element within it, as has been done in our example
above. Thus, we only read once from the table to get the 16-bit reload value. Then, we shift
it to the right by 8 bits to get its high byte, and simply mask off the higher 8 bits (by AND-
ing them with 0) to get its low byte.

12.6 NONVOLATILE RAM INTERFACE

It was shown in Section 11.7 how a nonvolatile RAM (NVRAM) retains its contents even
during the absence of power. An interface example was also given on how to copy
contents from the 8051 to the NVRAM and to later read back the values stored. The
program in C is given by following Example 12.5.

EXAMPLE NVRAM Interface

12.5 Rewrite in C language, the software for the NVRAM interface in Figure 11-13.

Solution

#include <reg51.h>
#include <reg5l.h>
#include <stdio.h>
#define RECALL 0x85 /* X2444 recall instruction */
#define WRITE 0x84 /* X2444 write enable instruction */
#define STORE 0x81 /* X2444 store instruction */
#define SLEEP 0x82 /* X2444 sleep instruction */
#define W_DATA 0x83 /* X2444 write data instruction */
#define R_DATA 0x87 /* X2444 read data instruction */
#define LENGTH 32 /* 32 hytes saved/restored */

unsigned char * R0; /* used to point to NVRAM locations */
unsigned char R5, R6, R7;

unsigned char bdata A; /* represents accumulator */
sbit aMSB = A^7; /* variahle aMSB to refer to A.7 */
sbit aLSB = A^0; /* variable aLSB to refer to A.0 */
sbit DIN = P1^2; /* X2444 interface lines */

330 | CHAPTER 12

sbit ENABLE = P1^1;
sbit CLOCK = P1^0;
bit C;
unsigned char NVRAM[LENGTH] _at_ 0x60;
void SAVE(void);
void RECOVER(void);
void W_BYTE(void);
void W_BYTE(void);
void RL_A(void); bit
RLC_A(bit);

main()

{
while(1) /* repeat forever */

{
SAVE(); /* copy from 8051 internal

locations 60H-7FH */
/* to X2444 EPROM */

RECOVER(); /* read previously saved data from
X2444 EPROM to */

/* locations 60H-7FH */
}

}

void SAVE(void)

{
R0 = NVRAM; /* R0 point to locations to save

to */
ENABLE = 0; /* disable X2444 */
A = RECALL; /* recall instruction */
ENABLE = 1;
W_BYTE();
ENABLE = 0;
A = WRITE; /* write enable prepares X2444 to

he written to */
ENABLE = 1;
W_BYTE();
ENABLE = 0;
for (R7 = 0; R7 < 16; R7++)/* R7 = X2444 address */

{
A = R7; /* put address in A */
RL_A(); /* put in hits 3, 4, 5, 6 */
RL_A();
RL_A();
A = A | W_DATA; /* build write instruction */
ENABLE = 1;
W_BYTE();
for (R5 = 2; R5 > 0; R5--)

{

DESIGN AND INTERFACE EXAMPLES IN C | 331

A = *R0; /* get 8051 data */
R0++; /* point to next byte */
W_BYTE(); /* send byte to X2444 */
}

ENABLE = 0;
}
A = STORE; /* if finished, copy to EPROM */
ENABLE = 1;
W_BYTE();
ENABLE = 0;
A = SLEEP; /* put X2444 to sleep */
ENABLE = 1;
W_BYTE();
ENABLE = 0;
}

void RECOVER(void)

{
R0 = NVRAN;
ENABLE = 0;
A = RECALL; /* recall instruction */
ENABLE = 1;
W_BYTE();
ENABLE = 0;
for (R7 = 0; R7 < 16; R7++)/* R7 = X2444 address */

{
A = R7; /* put address in A */
RL_A(); /* build read instruction */
RL_A();
RL_A();
A = A | R_DATA;
ENABLE = 1;
W_BYTE(); /* send read instruction

*/
for (R5 = 2; R5 > 0; R5--)

{
R_BYTE(); /* read byte of data */
R0 = A; / put in 8051 RAM */
R0++; /* point to next location */
}

ENABLE = 0;
}
A = SLEEP; /* put X2444 to sleep */
ENABLE = 1;
R_BYTE();
ENABLE = 0;
}

void R_BYTE(void)
{
for (R6 = 8; R6 > 0; R6--) /* use R6 as bit counter */

332 | CHAPTER 12

{
C = DIN; /* put X2444 data bit in C */
C = RLC_A(C); /* build byte in Accumulator */
CLOCK = 1; /* toggle clock line (l us) */
CLOCK = 0;
}

}

void W_BYTE(void)
{
for (R6 = 8; R6 > 0; R6--) /* use R6 as bit counter */

{
C = RLC_A(C); /* put bit to write in C */
DIN = C; /* put in X2444 DATA IN line */
CLOCK = 1; /* clock bit into X2444 */
CLOCK = 0;
}

}

void RL_A(void)

{
bit tempBit;

tempBit = aMSB; /* backup MSB of A */
A = A << 1; /* rotate A left */
aLSB = tempBit; /* rotate LSB into MSB */
}

bit RLC_A(bit C)
{
bit tempBit;

tempBit = C; /* backup C */
C = aMSB; /* shift ACC.7 into C */
A = A << 1; /* shift ACC left */
aLSB = tempBit; /* shift C into ACC.0 */
return C;
}

Discussion
This program requires that 32 bytes be allocated in internal data memory locations from 60H-
7FH. This is achieved by declaring an array, NVRAM of 32 byte elements, and specifying that
it should start at absolute address 60H. The main program continually performs the saving of
data bytes from internal data locations 60H-7FH to the NVRAM, and the restoring of
previously saved data from the NVRAM to the internal data locations 60H-7FH. Elements are
read from the NVRAM array indirectly by way of a pointer, R0. Data are sent serially to and
from the NVRAM, and the functions W_BYTE () and R_BYTE () are respectively used for
that purpose.

DESIGN AND INTERFACE EXAMPLES IN C | 333

12.7 INPUT/OUTPUT EXPANSION

In the previous chapter, two ways to expand the I/O were demonstrated in assembly lang-
uage. The following two examples show how the same thing can be done in C. In par-
ticular, Example 12.6 shows the method of I/O expansion by using shift registers, while
Example 12.7 shows how to expand the I/O by using the 8255.

EXAMPLE Interface to Shift Registers

12.6 Rewrite in C language the software for the Shift Register interface in Figure 11-16.

Solution

#include <reg51.h>
#define COUNT 2 /* numher of shift registers */
unsigned char bdata * R0;

unsigned char R6, R7;

unsigned char xdata * idata DPTR; /* DPTR in data, points to xdata */
unsigned char bdata A; /* represents ACC */
sbit aMSB = A^7;
sbit aLSB = A^0;

sbit SHIFT = P1^7; /* SHIFT/LOAD input: 1 = shift,
0 = load */

sbit CLOCK = P1^6; /* CLOCK input */
sbit DOUT = P1^5; /* DATA OUT output */
bit C;

bit PY; /* represents PARITY bit */

char * BANNER = {"*** TEST 74HC165 INTERFACE ***\n"};
unsigned char bdata BUFFER[COUNT]; /* buffer to store hytes read */
void GET_BYTES(void);
void SEND_HELLO_MESSAGE(void);
void DISPLAY_RESULTS(void);
bit RRC_A(bit C);
void OUTSTR(void);
void OUTCHR(void);
void OUT2HEX(void);
void SWAP_A(void);
void PARITY(void);
void HTOA(void);
main()
{
CLOCK = 1; /* set interface lines initially in */

SHIFT = 1; /* ... case not already */
DOUT = 1; /* DOUT must he set (input) */
SEND_HELLO_MESSAGE(); /* banner message */
while(l) /* loop forever */

{
GET_BYTES(); /* read shift registers */

DISPLAY_ RESULTS(); /* show results */
}

}

void GET_BYTES(void)
{
for (R6 = COUNT; R6 > 0; R6--) /* use R6 as byte counter */

{
R0 = 0x25; /* use R0 as pointer to buffer in bdata */
SHIFT = 0; /* load into shift registers hy pulsing... */
SHIFT = 1; /* ... SHIFT/LOAD low */
for (R7 = 8; R7 > 0; R7--)/* use R7 as bit counter */

{
C = DOUT; /* get a bit (put it in C) */
C = RRC_A(C); /* put in A.0 (LSB 1st) */
CLOCK = 0; /* pulse CLOCK line (shifts hits towards */
CLOCK = 1; /* ... DATA OUT */
}

R0 = A; / if 8th shift, put in buffer */

R0++; /* increment pointer to buffer */

}
}

void SEND_HELLO_MESSAGE(void)
{
DPTR = BANNER; /* point to hello message */
OUTSTR(); /* send it to console */
}

void DISPLAY_RESULTS(void)
{
R0 = 0x25; /* R0 points to bytes */
for (R6 = COUNT; R6 > 0; R6--) /* use R6 as byte counter */

{
A = *R0; /* get byte */
R0++; /* increment pointer */
OUT2HEX(); /* output as 2 hex character */
A = ' '; /* separate hytes */

OUTSTR();

} /* repeat for each byte */

A = '\n'; /* begin a new line */
OUTCHR();
}

bit RRC_A(bit C)
{
bit tempBit;

tempBit = C; /* backup C */
C = aLSB; /* rotate A.0 into C */
A = A >> 1; /* rotate A right */

334 | CHAPTER 12

DESIGN AND INTERFACE EXAMPLES IN C | 335

aMSB = tempBit; /* rotate C into A.7 */
return C;

}

void OUTSTR(void)

{
while (1)

{
A = 0;

A = DPTR[A]; /* get ASCII code */
if (A == 0) /* if last code, done */

break;

OUTCHR(); /* if not last code, send it */
A++; /* point to next code */

}
}

void OUTCHR(void)

{
PARITY(); /* get even parity of A and put in AY */
PY = !PY; /* change to odd parity */
aMSB = PY; /* add to character code */

while (TI != 1); /* Tx empty? no: check again */
TI = 0; /* yes: clear flag and */
SBUF = A; /* send character */

aMSB = 0; /* strip off parity bit */

}

void OUT2HEX(void)

{
unsigned char tempA = A; /* save A in tempA */
SWAP_A(); /* send high nihble first */
A = A & 0xf; /* mask off unwanted nihhle */
HTOA(); /* convert hex nihble to ASCII */

OUTCHR(); /* send to serial port */
A = tempA; /* restore A and send low nibble */
A = A & 0xf;
HTOA();

OUTCHR();

A = tempA;

}

void SWAP_A(void)

{
A = (A >> 4) | (A << 4); /* swap upper and lower nibbles of A */

}

void PARITY(void)

{
int i;

PY = 0; /* initialize parity to 0 */

336 | CHAPTER 12

for (i = 0; i < 8 ; i++) /* calculate parity of A*/
PY ^= (A >> i) & 1;

}

void HTOA(void)

{
A = A & 0xF; /* ensure upper nibhle clear */
if (A >= 0xA) /* 'A' to 'F'? */

A = A + 7; /* yes: add extra */
A = A + '0'; /* no: convert directly */
}

Discussion

The program first sends out a hello message to the display device attached to the serial port.
This essentially involves pointing to the message and calling the OUTSTR(), which in turn
calls the OUTSTR() function to send the message a character at a time. The function
GETEYTES() is then called to get two bytes from the shift register. These are immediately
displayed by calling the DISPLAY_RESULTS() function. GETBYTES() basically shifts in
the byte values bit by bit. Meanwhile, DISPLAY_RESULTS() makes use of the OUT2HEX()

function to convert the read byte values from hexadecimal to ASCII format, before calling
OUTSTR() to send the ASCII characters out for display.

The design example in Section 11.8.2 of the previous chapter discussed how one could use
the 8255 to add three additional 110 ports. As an illustration, an assembly language
program was written that read the status of eight switches connected to Port A, and for
each closed switch, a corresponding LED connected to one of the Port B pins is lighted.
The C program is as below:

EXAMPLE Interface to an 8255

12.7 Rewrite in C language the softwazre for the 8255 interface in Figure 11-18.

Solution
#include <reg51.h>
#include <stdio.h>
unsigned char xdata * idata DPTR; /* DPTR in data, points to

xdata */
unsigned char hdata A; /* represents ACC */
sbit a_l = A^0;
sbit a_1 = A^1;
sbit a_2 = A^2;
sbit a_3 = A^3;
sbit a_4 = A^4;
sbit a_5 = A^5;
sbit a_6 = A^6;
sbit a_7 = A^7;

void CPL_A();
main()

DESIGN AND INTERFACE EXAMPLES IN C | 337

{
A = 0x90; /* Port A = input, Port B = output */
DPTR = 0x0103; /* point to control register */
DPTR = A; / send control word */
while(1)

{
DPTR = 0x0100; /* point to Port A */
A = *DPTR; /* read switches */
CPL_A(); /* complement */
DPTR = 0x0101; /* point to Port E */
DPTR = A; / light up LEDs */
}

}

void CPL_A(void)
{
a_0 = (!a_0);
a_1 = (!a_1);
a_2 = (!a_2);
a_3 = (!a_3);
a_4 = (!a_4);
a_5 = (!a_5);
a_6 = (!a_6);
a_7 = (!a_7);
}

Discussion

This example also uses the pointer DPTR to access external memory locations. The opera-
tion of complementing the entire 8-bit content in A is done by the function CPL_A(), a
straightforward function that simply complements each bit within A.

12.8 RS232 (EIA-232) SERIAL INTERFACE

Connecting the 8051 to a PC via the RS232 serial interface was discussed in Section 11.9.
The design example was to write a program to input decimal numbers from the PC and
then send the corresponding ASCII code back to the PC screen. The C program to do this
is given in Example 12.8.

EXAMPLE Interface to RS232

12.8 Rewrite in C language the software for the RS232 interface in Figure 11-20.

Solution

#include <reg5l.h>

#include <stdio.h>

unsigned char bdata A; /* represents ACC */
sbit aMSB = A^7; /* variable aMSB to refer to A.7 */

sbit RTS = P1^7; /* variable RTS to refer to P1.7 */

338 | CHAPTER 12

sbit CTS = P1^6; /* variable CTS to refer to P1.6 */

bit C; /* represents carry bit */

unsigned char code * idata DPTR; /* DPTR in data, points to code */
unsigned char code ASC[10] ={0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36,

0x37,0x38, 0x39; /* ASCII table */
char code * MSG = {"PLEASE 1NTER NUMBER = "}; /* initial message */
void FACE(void);
void INCHAR(void); /* taken & modified from Example 8-7 */
void OUTCHR(void); /* taken & modified from Example 8-6 */

void PARITY(void);

main()
{
FACE(); /* initialize serial port & do handshake */

DPTR = ASC; /* point to ASCII table */

while(1)
{
INCHAR(); /* get decimal number and put in A */

A = DPTR[A]; /* convert to ASCII and store back in A */

OUTCHR(); /* output ASCII to serial port */

}
}

void FACE(void)
{
TMOD = 0x20; /* timer 1, mode 2 */
TH1 = 0x98; /* reload count for 9600 baud */
SC0N = 0x52; /* serial port, mode 1 */
DPTR = MSG; /* pointer to initial message */
TR1 = 1; /* start timer 1 */
RTS = 0; /* assert RTS */
while (CTS == 1); /* wait for CTS */
do

{
A = DPTR[A]; /* get ASCII characters */
OUTCHR(); /* send out */
DPTR++; /* if not end of message, get next character */
}

while (A != 0); /* else if end of message, stop */
}

void INCHAR(void)
{
while (RI != 1); /* wait for character */

RI = 0; /* clear flag */

DESIGN AND INTERFACE EXAMPLES IN C | 339

A = SBUF; /* read char into A */

PARITY(); /* get even parity of A and put in AY */

C = PY; /* for odd parity in accumulator, PY should
be set */

C = !C; /* complementing correctly indicates if
"error" */

aMSB = 0; /* strip off parity */

}

void OUTCHR(void)

{

PARITY(); /* get even parity of A and put in PY */

PY = !PY; /* change to odd parity */

aMSB = PY; /* add to character code */

while (TI != 1); /* Tx empty? no: check again */

TI = 0; /* yes: clear flag and */

SBUF = A; /* send character */

aMSB = 0; /* strip off parity bit */

}

void PARITY(void)
{
int i;

PY = 0; /* initialize parity to 0 */

for (i = 0; i < 8 ; i++) /* calculate parity of A*/

PY ^= (A >> i) & 1;

}

Discussion

This example employs familiar concepts such as using a temporary bit-addressable vari-
able, A, to represent the accumulator, using an array in code memory to represent a
lookup table and using the pointer, DPTR, to access the lookup table. Besides that, we
recall that in assembly language, we sometimes wish to store data in consecutive locations
in code memory by using the DE or DW assembler directives. This can be implemented in
C by using an array that is stored in code memory.We also make use of the function
INCHAR(), which is similar to the INCHAR() function discussed in Chapter 8, except
that since A is used instead of the accumulator, we need to compute the parity ourselves
by calling the PARITY() function, causing the parity to be stored in PY.

12.9 CENTRONICS PARALLEL INTERFACE

Printers interact with computers via the parallel port, and the common standard used is
called the Centronics parallel interface. We demonstrated in the previous chapter a
program to check the status of the printer before continually sending a test message to it
for printing. Example 12.9 shows just how this can be done in C.

340 | CHAPTER 12

EXAMPLE Interface to Centronics Parallel Interface

12.9 Rewrite in C language the software for the parallel interface in Figure 11-22.

Solution

#include <reg5l.h>
#include <stdio.h>

unsigned char bdata A; /* represents ACC */
unsigned char MASK = 0x3C; /* only check 4 of the bits */
unsigned char OK = 0x30; /* normal values of the 4 status bits */
sbit STR = P3^0;
sbit ACK = P3^1;
sbit BUSY = P3^2;
char code * MSG = {"THIS IS A TEST FOR THE PRINTER"}; /* test msg */

unsigned char code * idata DPTR; /* DPTR in data, points to code */
main()

{
while (1)

{
DPTR = MSG; /* point to test message */
do
{
P3 = MASK; /* activate STROEE, P3.1-P3.5 as input */
A = P3; /* read printer status */
A = A & MASK; /* only P3.1-P3.5 are wanted */
if (A != OK) /* any error? */

return; /* yes: stop */
A = 0; /* no error, get ready to send */
while (ACK == 1); /* before send, wait for ACK */

A = DPTR[A]; /* get char in test message */
P1 = A; /* send char to printer */
DPTR++; /* if not end, get next character */

while (A != 0); /* else if end of message, stop */
}

}

Discussion

Here, the 8-bit variable MASK is used to store the masking value, specifying which bits to be
masked off (ignored) by being cleared to zero. Bear in mind that a logical AND operation
is denoted by one ampersand symbol "&" and not two. Two ampersands "&&" would
denote a relational AND operator.

DESIGN AND INTERFACE EXAMPLES IN C | 341

12.10 ANALOG OUTPUT

Interfacing to an analog device often requires the use of ADCs and DACs. In Section 11.11,
it was shown how to connect the 8051 to the MC1408L8 DAC to generate an analog sine
wave by using a lookup table. Here we will present the corresponding C program.

EXAMPLE Analog Output

12.10 Rewrite in C language the software for the DAC interface in Figure 11-25.

Solution

#include <reg51.h>

#define MAX 1024

/* truncated TABLE of 1024 entries */
unsigned char TABLE[MAX] = {127, 128, 129, 130, 131, ...};

int data STEP = 1; /* can he initialized to any increment value */
unsigned char A; /* represents ACC */

int index = 0; /* use to point to entries in TABLE */

main()
{
TMOD = 0x2; /* 8-bit, auto reload */

TH0 = -100; /* 100 ms delay */
TR0 = 1; /* start timer */

IE = 0x82; /* enable timer 0 interrupt */
while(1); /* main loop does nothing! */
}

void T0ISR (void) interrupt 1
{
index = index + STEP; /* add STEP to index */
if (index > MAX)

index = 0; /* if end of TAELE, back to beginning */
A = TABLE[index]; /* get entry */
P1 = A; /* send it */

}

Discussion

The main program initializes the Timer 0, enables the corresponding Timer 0 interrupt, and
then does nothing. The bulk of the program lies in the Timer 0 interrupt function which, upon
every occurrence of the interrupt, accesses an entry from TABLE[], which is an array of 1024
entries between 0 and 255 that correspond to the magnitudes of one period of a sine wave.
(Notice that in the program above, TAELE[] is shown in truncated form.) When the end of
the table is reached, the table index is reinitialized to 0 so that the next entry obtained

342 | CHAPTER 12

would again be starting from the beginning of the table. Prior to the running of this pro-
gram, a separate program similar to that in Figure 11-24 is used to generate the 1024 en-
tries of TABLE[].

12.11 ANALOG INPUT

Figure 11-27 demonstrated how an assembly language program is used to use an ADC to
read and convert the voltage at a trimpot's center tap into digital form so that the correspon-
ding ASCII code can be output to the console. Given here is the program rewritten in C.

EXAMPLE Analog Input

12.11 Rewrite in C language the software for the ADC interface in Figure 11-27.

Solution

#include <reg51.h>
#define PORTA 0x101 /* 8155 Port A */

int xdata * idata DPTR; /* DPTR in idata, points to xdata */

unsigned char bdata A; /* represents ACC */
sbit aMSB = A^7; /* variable aMSE to refer to A.7 */
sbit aLSB = A^0; /* variable aLSE to refer to A.0 */
sbit WRITE = P1^0; /* ADC0804 WR line */
sbit INTR = P1^1; /* ADC0804 INTR line */

bit PY; /* represents parity bit */

char * BANNER = ("*** TEST ADC0804 ***\n"};
void OUTSTR(void);
void 0UTCHR(void);
void OUT2HEX(void);
void SWAP_A(void);
void PARITY(void);
void HTOA(void);

main()

{
DPTR = BANNER; /* send message */
OUTSTR();
while (1)

{
WRITE = 0; /* toggle WR line */
WRITE = 1;
while (INTR == 1); /* wait for INTR = 0 */
DPTR = PORTA; /* knit DPTR -> Port A */
A = *DPTR; /* read ADC0804 data */
OUT2HEX(); /* send data to console */
}

}

DESIGN AND INTERFACE EXAMPLES IN C | 343

void OUTSTR(void)

{
while (1)

{
A = 0;

A = DPTR[A]; /* get ASCII code */
if (A == 0) /* if last code, done */

break;

OUTCHR(); /* if not last code, send it */
A++; /* point to next code */

}

void OUTCHR(void)
{

PARITY(); /* get even parity of A and put in
AY */

PY = !PY; /* change to odd parity */
aMSB = PY; /* add to character code */

while (TI != 1); /* Tx empty? no: check again */
TI = 0; /* yes: clear flag and */
SBUF = A; /* send character */

aMSB = 0; /* strip off parity bit */

}

void OUT2HEX(void)
{
unsigned char tempA = A; /* save A in tempA */
SWAP_A(); /* send high nibble first */
A = A & 0xf; /* mask off unwanted nibble */
HTOA(); /* convert hex nibble to ASCII */
OUTCHR(); /* send to serial port */
A = tempA; /* restore A and send low nibble */
A = A & 0xf;
HTOA();
OUTCHR(); A = tempA;
}

void SWAP_A(void)
{

A = (A >> 4) | (A << 4); /* swap upper and lower nibbles of
A */

}

void PARITY(void)
{
int i;
Y = 0; /* initialize parity to 0 */
for (i = 0; i < 8 ; i++) /* calculate parity of A*/
PY ^= (A >> i) & 1;
}

344 | CHAPTER 12

void HTOA(void)

{
A = A & 0xF; /* ensure upper nibble clear */
if (A >= 0xA) /* 'A' to 'F'? */

A = A + 7; /* yes: add extra */
A = A + '0'; /* no: convert directly */
}

Discussion

The main program first displays a message to the console, and then toggles the WR line to
begin analog-to-digital conversion. It then waits for the ADC's INTR line to go low indi-
cating that the conversion is complete before it reads data from the ADC via the 8155's
port A. The data is next converted to hexadecimal format before being sent out to the
console for display.

12.12 INTERFACE TO SENSORS

In this section, we again discuss how the 8051 can interact with a typical sensor, the tem-
perature sensor. Recall that in Chapter 11, we presented an assembly language program to
monitor the room temperature by using the DS1620 temperature sensor. When the room
temperature is higher than 23°C, the furnace is turned on and the alarm sounds. If the tem-
perature falls below 17°C, the furnace is switched off and the alarm is switched off. We
show in Example 12.12 the corresponding C example to accomplish this.

EXAMPLE Interface to DS1620

12.12 Rewrite in C language the software for the sensor interface in Figure 11-29.

Solution

#include <reg5l.h>

#include <stdio.h>

unsigned char bdata A; /* represents ACC */

sbit aMSB = A^7; /* variable aMSB to refer to A.7 */

sbit aLSB = A^0; /* variable aLSB to refer to A.0 */

sbit DQ = P1^0;

sbit CLK = P1^1;

sbit RST = P1^2;

sbit THI = P1^3;

sbit TLO = P1^4;

sbit TC0M = P1^5;

sbit FURN = P1^6;

int i;

void SEND(void);

bit RRC_A(bit);

DESIGN AND INTERFACE EXAMPLES IN C | 345

main()

{

FURN = 0; /* turn furnace off */

RST = 1; /* initiate transfer */

A = 0xC; /* write config */

SEND(); /* send to DS1620 */

RST = 0; /* stop transfer */

RST = 1; /* initiate transfer */

A = 1; /* write TH */

SEND(); /* send to DS1620 */

A = 44; /* TH = 44 X 0.5 °C = 22 °C */

SEND(); /* send to DS1620 */

RST = 0; /* stop transfer */

RST = 1; /* initiate transfer */

A = 2; /* write TL */

SEND(); /* send to DS1620 */

A = 36; /* TL = 36 X 0.5 °C = 18 °C */

SEND(); /* send to DS1620 */

RST = 0; /* stop transfer */

RST = 1; /* initiate transfer */

A = 0xEE; /* start temperature sensing */

SEND(); /* send to DS1620 */

RST = 0; /* stop transfer */

while(1) /* keep sensing forever */

{

if (THI == 1) /* if T>= 22 °C, furnace = off */

FURN = 0;

if (TLO == 1) /* if T<= 18 °C, furnace = on */

FURN = 1;

}

}

void SEND(void)

{

for (i = 8; i > 0; i--) /* loop for all 8 bits */
{
CLK = 0; /* start clock cycle */
CY = RRC_A(CY); /* rotate A into CY, LSB first */
DQ = CY; /* send out bit to DB */
CLK = 1; /* complete the clock cycle */
}

}

346 | CHAPTER 12

bit RRC_A(bit C)
{
bit tempBit;
tempBit = C; /* backup C */
C = aLSB; /* rotate A.0 into C */
A = A >> 1; /* rotate A right */
aMSB = tempBit; /* rotate C into A.7 */
return C;
}

Discussion

Most of the functionality in this example is done by the function send(), which serially
(starting with the LSB) sends an 8-bit data to the port pin connected to the DQ (data) input
of the sensor.

12.13 INTERFACE TO RELAYS

In the last chapter, a very interesting application of relays was presented, that of a pedes-
trian traffic light system. The 8051 electrically controlled the relay to switch between two
states, either to turn on the RED traffic light and GREEN pedestrian light in order to allow
pedestrians to cross the road, or to turn on the GREEN traffic light and RED pedestrian
light. The program written in C to control all this is given in Example 12.13.

EXAMPLE Interface to a Relay: Pedestrian Traffic Light System

12.13 Rewrite in C language the software for the relay interface in Figure 11-33.

Solution

#include <reg51.h>

#include <stdio.h>

sbit LEDs = P1^0;

int thousand = 1000; /* 1000 X 10000 us = 10 secs */
int count; /* to store the count values */

void delay(void);

main()

{
IE = 0x81; /* enable INT0 */

IT0 = 1; /* negative edge triggered */
TMOD = 1; /* timer 0 in mode 1 */

DESIGN AND INTERFACE EXAMPLES IN C | 347

LEDs = 0; /* initially, traffic = GREEN,
pedestrian = RED */

while (1); /* wait forever */
}

void delay(void) /* 10-second delay */
{
for (count = thousand; count > 0; count —)

{
TH0 = 0x6C;
TL0 = 0x70;
TR0 = 1;
while(TF0 != 1);
TF0 = 0;
TR0 = 0;
}

}

void EX0ISR(void) interrupt 0
{
LEDs = 1; /* traffic light = RED, pedestrian =

GREEN */
delay(); /* wait 10 seconds */
LEDs = 0; /* traffic light = GREEN, pedestrian =

RED */
}

Discussion
Comparing this program with its assembly language counterpart in the previous chapter, it
would seem that they are very similar. The only difference lies in the amount of delay
generated by the delay() function, which is supposed to wait for 10 seconds to allow
pedestrians to cross the road before the traffic and pedestrian lights switch back to their
initial states. Nevertheless, the actual delay generated by this delay() function depends
on which 8051 C compiler is used. In order to determine the exact amount of delay
generated, we should view the corresponding assembly language instructions generated by
the compiler. In Keil's µVision2 IDE, this is done by choosing the Disassembly Window
from the View menu.

12.14 STEPPER MOTOR INTERFACE

The stepper motor finds interesting applications where precision-positioning of compo-
nents is required. We saw in Chapter 11 an example assembly language program that
demonstrated how to initially rotate a stepper motor clockwise, and whenever a switch
connected to external interrupt 0 (INT0) causes a high-to-low transition, the direction of
rotation should be reversed. In this section, we present the equivalent C program.

348 | CHAPTER 12

EXAMPLE Interface to a stepper motor

12.14 Rewrite in C language the software for the stepper motor interface in Figure 11-38.

Solution

#include <reg51.h>
#include <stdio.h>

unsigned char A; /* ACC mirror */
unsigned char tempA; /* temp variable */
unsigned char code * idata DPTR; /* DATR in data, points to

code */
bit D; /* direction bit for current

direction */
int HUNDRED = 100; /* 100 X 10000 us = 1 sec */

/* 8-step sequence for
clockwise rotation */

unsigned char code SEQ[8] = {0x9, 0x8, 0xC, 0x4, 0x6, 0x2,
0x3, 0x1};

void CW(void);
void CCW(void);
void delay(void);

main()

{
IE = 0x81; /* enable INTO */

IT0 = 1; /* negative edge triggered */
TMOD = 1; /* timer 0 in mode 1 */
D = 0; /* initialize D = 0 for

clockwise rotation */
CW(); /* initial rotation is

clockwise */
while(1) /* repeat forever */

{
if (D != 1) /* previously clockwise? */

CCW(); /* no: change to clockwise */
else

CW(); /* yes: change to
counterclockwise */

void CW(void) /* function for clockwise
rotation */

{
DATR = SEQ; /* point to start of table */
for (A = 0; A < 8; A++)

{
tempA = A; /* backup index in A */

DESIGN AND INTERFACE EXAMPLES IN C | 349

A = DPTR[A]; /* get step pattern into 4 LSBs of
A */

A = A | (P1&0xF0); /* retain 4 MSBs of A1 and put into
A */

P1 = A; /* send to stepper motor */
delay(); /* wait for 1 sec */
A = tempA; /* restore index into A */

}

}

void CCW(void) /*function for counterclockwise
rotation */

{
DPTR = SEQ; /* point to start of tahle */
for (A = 7; A >= 0; A==)

{
tempA = A; /* hackup index in A */
A = DPTR[A]; /* get step pattern into 4 LSBs of

A */
A = A | (P1&0xF0); /* retain 4 MSBs of P1 and put into

A */

P1 = A; /* send to stepper motor */
delay(); /* wait for 1 sec */
A = tempA; /* restore index into A */

}
}

void delay(void) /* 1 second delay */

{
for (tempA = HUNDRED; tempA > 0; tempA--)

{
TH0 = 0x6C;
TL0 = 0x70;
TR0 = 1;
while(TF0 != 1);
TF0 = 0;
TR0 = 0;

}

}

void EX0ISR(void) interrupt 0

{
D = !D; /* complement direction bit */

}

Discussion

The program basically consists of the cw() and ccw() functions that directly interact with
the stepper motor and direct it to rotate clockwise and counterclockwise respectively. The
only difference between these two functions, though, is just the sequence of step patterns
being written to the stepper motor. In between the writing of a step pattern to the stepper

350 | CHAPTER 12

motor, the delay() function is called to give ample time for the stepper motor to digest
each step pattern.

PROBLEMS

12.1 Rewrite the software for the LCD to continually display the message "Welcome to
the 8051 Microcontroller Experience. Hope you enjoy your reading adventure."

12.2 Imagine that the stepper motor is used to automatically turn the knob of a
safe. Based on a sequence of user-supplied numbers, the stepper motor
turns the knob by the specified number of steps clockwise, then counter-
clockwise, clockwise, etc. For example, if the sequence is 8, 0, 1, 6, 0, 9,
9, then the stepper motor first turns clockwise by 8 steps, turns counter-
clockwise by 0 steps, turns clockwise again by 1 step, and so on. Write a
function safe (int * seq, int seqsize) to receive as input a se-
quence of numbers that have been stored in an array of size seqsize, and
then turns the stepper motor according to the input sequence. Assume the
availability of the CW () and the ccw () functions.

12.3 The 8051 microcontroller is commonly used in smart cards, which are cards not only
with built-in memory but also a built-in microcontroller as its brain, making it
capable of running programs from within itself. Some of the information contained
in smart cards is confidential, hence there is a need for some form of protection from
unauthorized access. This is usually done by encrypting the information. Encryption
is the process of transforming confidential information (normally called the
plaintext) into an unintelligible form (called the ciphertext). Once in this form, even
if someone were to eavesdrop or spy on it, he would not be able to understand its
meaning. The only way to get back the original information is to perform the reverse
process, called decryption. The Caesar cipher is one method of encryption that dates
back to the days of the Roman empire, and is named after its inventor Julius Caesar.
Though simple by today's standards, and no longer in use to protect information, an
understanding of how it works helps to give us a basic idea of encryption. A more
detailed treatment of security and encryption will be given in Chapter 13.

Consider the English alphabet:

Imagine if we shifted all the alphabets 3 positions to the left, such that we obtain a
new set of alphabets:

Then, given any confidential message, we replace each character from the first set
of alphabets with a character from the second set of alphabets. For example, every
BA' we see will be replaced with a 'D', every 'B' with an BE', every 'C' with an 'F'
and so on.

So the message:

would be encrypted to:

DESIGN AND INTERFACE EXAMPLES IN C | 351

Write a function CaesarEncrypt (char * plain, char * cipher) that takes in two message
strings (arrays of characters), plain and cipher, respectively. Encrypt the message plain
and save the encrypted message in cipher.

12.4 With reference to the previous question, write the corresponding function Caes - arDecrypt

(char * plain, char * cipher) to decrypt a message stored in cipher and save the decrypted
message in plain.

352 | CHAPTER 12

Example Student Projects

13.1 INTRODUCTION

Students are often eager to do work on microcontroller and other robot-based projects.
When assigned the task of constructing 8051-based projects, one often wonders in amaze-
ment at the enthusiasm and keen interest shown by the students. The student reader has
also seen some design and interface problems in Chapters 11 and 12. As an extension of
that, we will attempt in this chapter to outline potential student projects that would help to
tie together all the concepts discussed in the earlier chapters of this book.

We will start with one of the simplest such projects: an 8051-based home security
system. Other more advanced-level projects would include a simple elevator system, a
Tic-TacToe game, an 8051-based calculator, a micromouse, a soccer-playing robot, and a
smart card application.

13.2 HOME SECURITY SYSTEM

One of the simplest projects to build up the design skills in the student is the 8051-based
home security system. This is basically a demonstration of how to interact with I/O
devices through the 8051's I/O ports.

13.2.1 Project Description

A sample project description for such a home security system could be:

Design an 8051 microcontroller-based home security system that has 64 Kbyte external
code memory and 64 Kbyte external data memory. Assume you only have 8 K EPROMs
and 8 K RAMs available.

353

354 | CHAPTER 13

Your security system should be able to detect when any of these sections of the house
have been opened or intruded by a burglar:

1. gate
2. front door
3. back door
4. any window

When one of them has been opened, turn on an alarm and also use a seven-segment
display to display the corresponding house section. For example, if the gate is open,
display 1. If any window is open, display 4.

13.2.2 System Specifications

The first thing for the student in tackling this project is to determine the required components
for the system. Based on the project description, it is clear that the following are needed:

 1 x 8051 microcontroller
 8 x 8Kbyte ROM/EPROM/EEPROM
 8 x 8Kbyte RAM
 4 x sensors
 1 x alarm
 1 x 7-segment display

The requirement was that the system should have 64 Kbyte of external code
memory, but since only 8 Kbyte ROM chips are available, we would have to make do
with having eight of them in cascade. The same goes for implementing the external data
memory. We need to detect intrusions at four different points of the house as outlined in
the project description, hence we would need at least four sensors which could be infrared,
light, or even switch sensors. Besides these, the project also requires the use of an alarm
and a seven-segment display to indicate the point of intrusion. Notice that the list above
does not include the components needed for the external crystal clock circuit and reset
circuit. For details of such components, please consult Figure 2-2 in Chapter 2.

13.2.3 System Design

The next step involves making design choices to come up with a system that meets the
requirements and specifications previously outlined. This includes deciding where to connect
what to, what to use the 8051 I/O ports for; culminating in an overall schematic diagram show-
ing the 8051 and how its pins (I/O, control, and clock) are connected to external memory and
various 1/0 devices such as the sensors, alarm, and seven-segment display. Students might also
want to use a 74LS47 BCD-to-seven-segment decoder to minimize the I/O port pins.

13.2.4 Software Design

Having decided on the hardware connections, the student can then proceed to designing and
programming the software to control the 8051 and how it should interact with the external
devices. This is often done with reference to the overall schematic diagram. Some questions

EXAMPLE STUDENT PROJECTS | 355

that you should ask yourself, and hence the corresponding programming decisions that
you should make, include:

 How should I sense the intrusion points? Via polling or interrupt?
 What priority should I assign to each intrusion point?
 When an intrusion occurs, what should I do?
 Should my system be programmed to detect more than one intrusion at a time?
 Should I include a capability to reset or deactivate the system?
 Should I allow the home owner to customize the system?
 Would the system have any security? For example, how should I ensure only the

home owner can customize or deactivate the system?

Often, in coming up with such questions, you need to put yourself in the shoes of the
actual user to be able to better understand the situation and the problem that you are
trying to solve with the system.

Given below is a sample pseudo code for this home security system:
Pseudo Code:

WHILE [1] DO BEGIN
WHILE [sensor == false] DO

[wait]
CASE [sensor] OF

`gate': [display = 0]

frontdoor': (display = 1]
`backdoor': [display = 2]
`windows': [display = 3]

END_CASE
[alarm = on]
IF [reset == TRUE && password == TRUE]

THEN [alarm = off]
END

The pseudo code above shows that the program is in an infinite loop. As long as no sensor
is triggered, the program waits and does nothing. When a sensor is triggered, it is checked
to see which intrusion point it corresponds to, after which a number from 0 to 3 is displayed
on the seven-segment display to indicate the point of intrusion. Next, the alarm is turned on.
The program also allows for a reset mode where if the correct owner password is keyed in,
the security system is reset and the alarm is turned off.

13.3 ELEVATOR SYSTEM

An elevator system is another interesting project that students could undertake. For sim-
plicity, we will only consider a three-floor elevator system.

13.3.1 Project Description

The project description follows:

Design an 8051-based elevator system that supports three floors, namely ground, first
floor, and second floor

356 | CHAPTER 13
Your system should consist of two parts:

1. Inside the Elevator
Figure 13-1 shows the inside of the elevator. The floor request buttons, G, 1, and 2, are used by
the elevator passenger to request the floor to which he wants to travel. The open (respectively
close) door buttons are used by the passenger to open (or close) the elevator door. Meanwhile,
there is also a corresponding door open-close indicator, which is basically a series of eight
LEDs arranged from left to right, flashing one at a time. When the flashing LED is leftmost, this
indicates that the door is closed. When the flashing LED is rightmost, the door is fully open.

2. Outside the Elevator
Figure 13-2 shows the outside of the elevator. The floor indicators are available at each
floor to indicate whether the elevator is currently at that floor. The summon elevator but-
tons are used by the waiting passenger outside the elevator to summon the elevator to his
floors, and to indicate which direction the passenger wants to travel, up or down.

13.3.2 System Specifications

A thorough read through the project description reveals that we would require:

 1 x 8051 microcontroller
 9 x switch buttons (five for inside, four for outside)

FIGURE 13-1
Inside the elevator
FIGURE 13-2
Outside the elevator

EXAMPLE STUDENT PROJECTS | 357

 11 x LEDs (eight for door open-close indicator, three for floor indicators)
 1 x 7-segment display

It is clear that this project merely involves the interaction with switches and LEDs, plus a
seven-segment display. Therefore, it is not much different from the home security system
in the previous section. The only thing here is that we are considering a totally different
scenario, and the sequence of happenings (opening door, elevator moving, etc.) is more
complex than the home security system.

13.3.3 System Design

The system design stage in this case would involve deciding which port pins to connect to
the switch buttons, the LEDs, and the seven-segment display. Also, since the elevator sys-
tem does not require the use of external memory, all four ports of the 8051 are available
for I/O purposes so we have plenty to spare.

13.3.4 Software Design

The resultant program for this elevator system would be more complex because various
scenarios have to be considered, including:

 Is the elevator currently on the same floor as that on which the up/down button
request is made?

 Is the elevator going in the same direction as the request?
 If not, but the requesting floor is nearer, would it stop and service this first or

ignore it and finish servicing an existing request?
 Would the elevator be servicing the nearest requesting floors first or would it be

constantly moving in one direction from the lowest requesting floor to the
highest, before changing direction and repeating the process?

 If there is no request, what should the elevator be doing?

There are various alternatives to handling the problem and previous students have come up
with all sorts of ways to tackle this. A possible program could follow along the lines of the
pseudo code below:
Pseudo Code:

[start at ground floor]
WHILE [1] DO BEGIN

WHILE [elevator summon == FALSE] DO
[wait]

IF [summoning floor == current floor]
THEN BEGIN

[door = open]
WHILE [open door button == TRUE] DO

[wait]
[door = close]

END

[direction = up]

358 | CHAPTER 13

BEGIN

WHILE [[summoning floor != current floor] &&
[requested floor != current floor]] DO BEGIN

IF [current floor == TOP_FLOOR]
THEN [direction = down]

IF [current floor == TOP_FLOOR]

THEN [direction = up]
IF [direction == up]

THEN [current floor = current floor + 1]
ELSE [current floor = current floor - 1]

[floor indicator = current floor]
[floor display = current floor]

END
BEGIN

[door = open]
WHILE [open door button == TRUE] DO

[wait]
[door = close]
END

END
END

Here, the current floor is the floor on which the elevator is currently at; the
summoning floor is the floor on which a waiting passenger outside the elevator has
pressed the summon elevator button; while the requested floor refers to the floor
requested by the passenger from within the elevator by pressing the floor request button.

The program is in an infinite loop and the elevator is initially on the ground floor,
waiting to be summoned by people who are in need of the elevator on their floor. When
the elevator is summoned, the program checks if the elevator is already on that floor, and
if so would open the elevator door, wait for a while, and only close the door when the
open door button is no longer pressed. The elevator then moves up.

As the elevator is going up from one floor to the next, the program checks if there
are any elevator summons on the current floor, or if any passenger within the elevator had
requested to go to that floor. If not, the elevator keeps going to the next floor. If the
current floor is already the top or bottom floor, the direction of travel is reversed. At the
same time, the floor indicators outside the elevator as well as the floor displays within the
elevator would be updated to correspond to the current floor.

If the current floor is either the summoning floor or the requested floor, then the ele-
vator opens its door, and waits for the passenger to release the open door button before
it closes the elevator doors.

13.4 TIC-TAC-TOE

A more challenging project for students would be the development of games, and the corre-
sponding artificial intelligence (AI) that would allow the program to compete with humans and
with each other. One such project is the developing the Tic-Tac-Toe game based on the 8051.

EXAMPLE STUDENT PROJECTS | 359

TABLE 13-1

Playing modes

MODE P1.3 (M1) P1.4 (M1)

0 - Human vs Human 0 0
1 - Human vs AI 0 1
2 - AI vs Human 1 0

13.4.1 Project Description

First, the project description and rules of the game have to be outlined: Design an 8051-

based Tic-Tac-Toe game that consists of two parts:

1. Tic-Tac-Toe Game Environment
At the start of the game, the player(s) selects one of three playing modes: Human vs
Human, Human vs AI, and AI vs Human. The playing mode is input via two port pins, P1.3
and P1.4, and is shown in more detail in Table 13-1.

There should be a 3 x 3 Tic-Tac-Toe panel (see Figure 13-3) to indicate which box
has already been selected by a player. A selected box would either light up as yellow
(Player 1) or red (Player 2). When a vertical, horizontal, or diagonal row of three boxes of
the same color has been selected, the corresponding player wins the game. Otherwise, if
all boxes have been selected but no such row occurs, the game ends in a draw Each of the
nine boxes basically consists of a yellow and red LED, and all these LEDs are connected
to the 8051 through Ports 0, 1, and 2 as indicated in Figure 13-4.

Each player takes turns to interact with a 3 x 3 matrix keypad to select a certain box
during his turn. The connections of the 8051 to the keypad are via Port 3. Player 1
indicates the end of his turn by setting P0.4 (Elf), which lights up an end-of-turn LED.
Similarly, Player 2 ends his turn by setting his end-of-turn LED connected to P0.3 (E2).

At the end of the game, the results will be indicated on LEDs connected to P2.3 and
P2.4, whose details are in Table 13-2.

2. Tic-Tac-Toe Artificial Intelligence (AI) Component
The Al component should be able to play as either player 1 or player 2 and should attempt
as best as it could to win over the human player.
FIGURE 13-3
Tic-Tac-Toe
1 2 3

4 5 6

7 8 9

pane

360 | CHAPTER 13

FIGURE 13-4
Connecting the 8051 to the Tic-Tac-Toe pane

13.4.2 System Specifications

The Tic-Tac-Toe system consists of mostly LEDs and a 3 X 3 keypad for interacting with
the human player. A detailed list of components needed is as follows:

 1 x 8051 microcontroller
 1 x keypad (3 x 3)
 11 x yellow LEDs
 11 x red LEDs

TABLE 13-2
Final results indicated on LEDs connected to P1.3 and P1.4

MODE P2.3 (F1) P2.4 (F0)

Player 1 (Yellow) Wins 1 0
Player 2 (Red) Wins 0 1

Draw 1 1

EXAMPLE STUDENT PROJECTS | 361

So you see, there really is nothing much to the Tic-Tac-Toe hardware. What is more im-
portant is the logical and clear organization of the LEDs to avoid confusions on the part of
the human player.

13.4.3 Software Design

In writing the game environment component, some questions come to mind:

 How do you determine the end of a player's turn?
 How should you check and hence run a playing mode?
 How do you determine if the game was won by a player or ended in a draw?

Meanwhile, for the AI part of the project:

 How do you determine the best box position?
 How do you block an opponent's bid for a three-in-one row?
 Are there any more advanced and subtle techniques to fool the opponent into

selecting a box to your advantage?
 Should the AI strategy be fixed or should it adaptively change based on the

current situation?

The pseudo code for a possible Tic-Tac-Toe game environment is given below:
Pseudo Code:

WHILE [input == FALSE]
[wait]

[current player = yellow]
CASE [mode] OF

`0': BEGIN
WHILE [1] DO BEGIN

[check current player color]
WHILE DO [player input == FALSE]

[wait]
[selected box == player color]
IF [3-in-a-row == TRUE]

THEN BEGIN
[display winner]

[end game]
END

IF [all boxes selected == TRUE]
THEN BEGIN

[display draw]
[end game]

END
END

END

`1': BEGIN
[current player = human]
WHILE [1] DO BEGIN

[check current player color]

362 | CHAPTER 13

IF [current player == AI]
THEN [call AI]

WHILE DO [input == FALSE]
[wait]

[selected box == player color]
IF [3-in-a-row == TRUE]

THEN BEGIN
[display winner]
[end game]

END
IF [all boxes selected == TRUE]

THEN BEGIN
[display draw]
[end game]

END
current player = other player]

END
END

`2': BEGIN

[current player = AI]
WHILE [1] DO BEGIN

[check current player color]
IF [current player == AI]

THEN [call AI]
WHILE DO [input == FALSE]

[wait]
[selected box == player color]
IF [3-in-a-row == TRUE]

THEN BEGIN
[display winner]
[end game]

END
IF [all boxes selected == TRUE]

THEN BEGIN

[display draw]
[end game]

END
[current player = other player]
END

END

END_CASE

This program waits for the player to give an input to start playing Tic-Tac-Toe. Once an
input is detected, it checks to see what mode of play has been selected. If it is mode 0,
which is "Human vs Human," then the program goes into an infinite loop and checks to see
who is the current player and waits for the current player to make his turn. When an input
has been made, meaning a certain box has been selected, the program displays changes the
color of that box to the corresponding color of the current player. After the current player

EXAMPLE STUDENT PROJECTS | 363

has taken his or her turn, the program checks to see if there are any three boxes of the same
color in a vertical, horizontal, or diagonal row. In such a situation, the winner is displayed
and the game ends. Otherwise, the program checks if all boxes have been selected, which
means that the game is a draw and this result is also displayed.

Otherwise, if mode 1, which is "Human vs AI," has been selected, the first player to
start is the human player. Going into an infinite loop, the program then checks the current
player. If the current player is the AI, the AI function would be called to calculate the best
box to choose. Whether it is the AI or a human player, when a box has been selected by a
player, it is displayed with the player's color. The program proceeds to check for three
equally-colored boxes in the same row, upon which it has detected a winner, displays the
result, and ends the game.

Mode 2 with "AI vs Human" is also similar to mode 1, with the difference that the
first player to start is the AI.
Meanwhile, the pseudo code for a possible Tic-Tac-Toe's AI is given below:
Pseudo Code:

IF [opponent's 2-in-one row == TRUE]
THEN [block opponent's chance]

ELSE BEGIN
[calculate best box position]
WHILE [box == taken] DO

[calculate next best box position]
[select box]
END

The AI looks simple enough. The main priority is to first block an opponent's attempt at
getting three boxes in a row so if two boxes in a row are detected, then the AI's choice
would be to select the third box in order to block the attempt and prevent the opponent
from winning. Next, if there are not two boxes in a row, that means the AI is still safe and
has more flexibility to choose a box based on its calculations. If the best box has already
been taken, it calculates the next best box and so on until it finds a free box upon which it
immediately selects. Simple it may seem, but the real task of programming the AI lies in
the calculation of the best box positions. Here is what distinguishes the best AI from
among the rest.

The separation of the software into two parts helps ease the programmer's task. This
also provides an interesting exercise on modular programming, where a program is
divided into modules, each written by a separate programmer. Once the programming is
done, the modules are integrated into one complete program. Modular programming allows
for several parts of a program to be developed concurrently and is best suited for large and
complex programming projects.

13.5 CALCULATOR

Calculators are so common these days that we sometimes tend to take them for granted. As a
further exercise in 8051-based system design and interfacing, an 8051-based would be a con-
tenting project. Of course, to keep it simple, only the basic operations would be considered.

364 | CHAPTER 13

13.5.1 Project Description

The project description proceeds as follows:

Design an 8-bit 8051-based calculator to perform simple arithmetic operations such as:

 Addition
 Subtraction

 Multiplication
 Division
 Logical AND
 Logical OR
 Logical NOT
 Logical XOR
 Square
 Square root
 Cube
 Cubic root
 Inversion
 Exponentiation
 Factorial
 Modulo operation
 Percentage
 Pi
 Basic memory operations

Your calculator should be able to support 16-bit answers, which should be displayed on
either LCD or 7-segment displays. User input should be via a matrix keypad whose layout
should be designed.

13.5.2 System Specifications

The calculator requires a matrix keypad for input, and either an LCD or seven-segment
display for output. Besides these, there should at least be one push button switch for
switching on the calculator, and a corresponding LED to indicate that the calculator is on.
Therefore, the components needed for this system would be:

 1 x 8051 microcontroller
 1 x matrix keypad
 1 x LCD or 5 x 7-segment displays
 1 x LED
 1 x push button switch

13.5.3 Software Design

The software to control this system would be similar to that of operating systems such as
Windows or MS-DOS, in which all arithmetic and logical operations as well as interactions

EXAMPLE STUDENT PROJECTS | 365

with input and output devices are handled by the program. In writing this program, the fol-
lowing should be considered:

 How do you determine if the key pressed by the user is a number or an operation?
 How should you handle operator precedence?
 Should you allow for accumulated operations?
 Should the calculator operate with unsigned or signed numbers?
 Should the calculator support decimal points?
 How would you implement each type of arithmetic or logical operation?
 Would you use lookup tables?

A possible 8051 calculator could operate based on the following pseudo code:
Pseudo Code:

WHILE (1) DO BEGIN
WHILE [keypress == FALSE]

[wait]
CASE [keypress] OF

`numeric': BEGIN

[save numeric value]

[format for 7-segment display]
[send to 7-segment display]
END

`operation': BEGIN
[determine operation]
[save operation]
END

`memory operation': BEGIN
[determine operation]
[perform operation]
END

`equal': BEGIN

[recall saved numeric values and operations]
[perform operations]

[format result for 7-segment display]
[send to 7-segment display]
END

END_CASE
END

The program waits indefinitely for a key press. When a key press is detected, it is checked
to see if it corresponds to a numeric value, arithmetic or logical operation, a memory
operation, or the equal key. When the former two are detected, the program checks
specifically which value or operation they are and saves them. A numeric value would
also be formatted and sent to the seven-segment display. If a memory operation is
requested, the program immediately determines what memory operation is requested and
services it. Finally, if the equal key is pressed, it means the user is ready to see the
results, so all previously saved numeric values and operations are recalled and performed
according to precedence. The result is then formatted and sent to the 7-segment display.

366 | CHAPTER 13

13.6 MICROMOUSE

When you connect the 8051 (the brain), some sensors (the eyes, ears, etc.), and some mo-
tors (the hands and feet), you get a basic robot. One such robot is the micromouse, which
is the name for a robot that imitates a mouse and which tries to solve a maze. Solving a
maze requires that the micromouse start from one end and slowly learn, mostly by trial and
error as well as memorizing, the correct path to the other end of the maze. Once it has
found the correct path and reached the other end of the maze, it should be able to follow
this path the next time it is put in the maze. Micromouse contests are popular and held in
many areas around the world. In this section, we will consider a micromouse project.

13.6.1 Project Description

As usual, we describe details of the project:

Design an 8051 microcontroller-based micromouse that should have the ability to move
forward, turn left and right as well as make U-turns. It should be able to solve a maze as
fast as possible and once solved, should store the correct path in its memory.

13.6.2 System Specifications

In order to move forward and make turns, the micromouse should have two motors attached,
respectively, to its left and right wheels. It should also be able to know if it has reached a
dead end, or if there is a wall on its left or right if it wanted to turn in that direction. For that,
it would need some sensors. Two infrared sensors would suffice. Probably we could also
include some LEDs to indicate what the micromouse is currently supposed to do, that is
whether it is going forward, turning left, right, or making a U-turn. The micromouse would
also need some large external memory for memorizing paths previously traversed. There-
fore, the components for the micromouse are:

 1 x 8051 microcontroller
 2 x motors
 2 x infrared sensors
 1 x 64Kbyte RAM
 2 x LEDs

13.6.3 System Design

The main part of the system design stage is to decide where to put the infrared sensors.
The infrared sensor is typically made of two parts arranged side by side: an infrared LED
to emit infrared light and an infrared detector (phototransistor) to detect the presence of
any infrared light. If a wall is in the way of the sensor, the infrared light emitted by the
infrared LED would be reflected and subsequently detected by the infrared detector.
Otherwise, if no wall is present, there would be no reflection and hence no infrared light
would be detected. This is how the micromouse would know if there are any walls in a
certain direction.

EXAMPLE STUDENT PROJECTS | 367

FIGURE 13-5

Top view of a micromouse

One of the sensors should be put on the front of the mouse to detect if it has any walls
blocking its forward movement. The other sensor should be put on either the left or right
side of the mouse. Suppose you decide to put it on the left side, as shown in Figure 13-5.

The next question asked is: If you only have a sensor on one side, how would you be
able to sense for the presence of walls on the other side? The answer is: you don't have to
do that directly. Let's consider this with some example situations, as given in Examples
13.1 to 13.3.

EXAMPLE The Micromouse Reaches a Left Corner
13.1 How would the micromouse know that it has reached a left corner?

Solution

Front sensor senses wall. Left sensor senses no wall.

Discussion

In this case, the front sensor of the micromouse detects a wall blocking its forward move-
ment. Meanwhile, the left sensor senses no wall. Hence it will know that it has reached a
corner where it cannot move forward but can turn left.

Of course, it could be possible that the micromouse has reached a T-junction, in which
case it could have turned left or right. Nevertheless, since left is free to turn to, the micro-
mouse should try the left path first and come back later to try the right one.

EXAMPLE The Micromouse Reaches a Right Corner
13.2 How would the micromouse know that it has reached a right corner?

Solution

Both front and left sensors sense walls.

Discussion

Since both sensors sense the presence of walls, the micromouse can neither move forward
nor turn left. Hence, it guesses that there should be no wall on its right and so makes a turn
to the right.

However, it could be possible that the micromouse has reached a dead end, in which
case even its right side would have a wall. We will consider this in the next example.

368 | CHAPTER 13

EXAMPLE The Micromouse Reaches a Dead End
13.3 How would the micromouse know that it has reached a dead end?

Solution

Previously, both front and left sensors sensed walls. After it makes a right turn, the front
sensor again senses a wall.

Discussion

Previously, both the front and left sensors sensed walls, so the micromouse turned right.
However, after making the turn, its front sensor still senses a wall. This could only happen
if it were at a dead end. In this case, it should turn right a second time, so that it has effec-
tively made two right turns. This is essentially a U-turn. It can now proceed forward to
trace back its steps and leave the dead end.

13.6.4 Software Design

The software for the micromouse is somewhat complicated and requires some deep
thinking. Several issues include:

 How would the micromouse detect left corners, right corners, and dead ends?
 How do you make the micromouse turn left or right?
 In what order should the micromouse test out all the possible paths? Should the

nearest or furthest branches be fully tested first?
 How should the micromouse remember previously traversed paths?

The pseudo code for the micromouse program is as follows:
Pseudo Code:

WHILE [1] DO BEGIN
[left motor = right motor = forward]
IF [front sensor == wall]

IF [left sensor == no wall]
THEN BEGIN

[left motor = backward]
[right motor = forward]

END
ELSE BEGIN

[left motor = forward]
[right motor = backward]
IF [front sensor == wall]

THEN BEGIN
[left motor = forward]
[right motor = backward]

END
END

[memorize path]
END

The issue of detecting corners and dead ends has just been discussed in Examples 13.1 to 13.3.
What about turning left and right? This can easily be solved. If the micromouse is to go forward,

EXAMPLE STUDENT PROJECTS | 369

both motors should turn forward. If it wants to go left, the left motor should go backwards
while the right motor should go forward. Similarly, to turn right, the left motor should go
forward while the right motor should go backwards.

The pseudo code above shows that the program goes into an infinite loop, and ini-
tially goes forward. If it senses a wall in front, it proceeds to sense if there is a wall on its
left. If not, it turns left. Otherwise, it turns right. After turning right, it senses if there is a
wall in front. If there still is then it is at a dead end, so it turns right again. Now that it has
done the required turns, it can proceed to go forward. During all this while, the
micromouse is also memorizing the paths that it has previously traversed.

The main challenge in programming the micromouse lies in the one line: [memorize
path]. How should the micromouse memorize the paths to ensure that the next time it
comes to the same T-junction or crossroad, it would not choose paths with dead ends?
This will be the subject of immersing thought and vigorous programming trials.

13.7 A SOCCER-PLAYING ROBOT

The previous section discussed how an 8051 could be used as the brain for a mouse-like
robot, enabling it to find its way through a maze and hence solve it. In fact, the 8051 can
be used to control any robot, and is among the popular microcontrollers that are used by
robot enthusiasts as robot brains. Robot contests are held around the world, and are very
interesting sights indeed. Participating robots would be required to do all sorts of tasks
ranging from playing simple sports to more complicated tasks such as climbing stairs. In
this section, we will discuss how an 8051 is used to control a soccer-playing robot.

13.7.1 Project Description

Design an 8051 microcontroller-based robot to take part in a robo-soccer contest, lasting 10
minutes. During each match, two robots playing as blue and red are put in a grey-carpeted
arena with randomly placed blue and red balls of 15mm in diameter. A common goal is lo-
cated at one end of the arena and is illuminated by bright lights. Each robot should detect the
presence of balls, sense the ball colors, and collect balls of its own color. However, it should
only store one ball at a time. Once it has collected a ball, it should search for the common
goal and kick the ball into the goal.

13.7.2 System Specifications

Similar to the micromouse, the robot should have wheels attached to motors. It would
also need some light sensors (LED and phototransistor pairs) to detect the goal, and ball
colors, plus some contact sensors such as switches to detect walls or the opponent robot.
Since the robot is to stand alone, it should have nonvolatile memory. In this case, an
EPROM would be a good choice since this would allow the program to be overwritten at
will, which is often desirable. The required components are then:

 1 x 8051 microcontroller
 2 x motors
 4 x wheels

370 | CHAPTER 13

 2 x light sensors (LED and phototransistor pair)
 4 x switches
 1 x EPROM

13.7.3 System Design

In designing this robot system, where to put the light and contact sensors is important. For
example, the light sensors to sense the ball colors should be well shaded from their exter-
nal surroundings, otherwise it would affect the color detection. This is especially so when
the robot is very near the goal. The brightness of the goal lights would interfere with the
light from the sensor's LED and cause confusion.

Another design issue is the kicking mechanism. Various methods exist to kick the
ball, and watching different students think up different ideas would be part of the fun.
Some would use motors to swing a shaft to make contact with the ball, similar to how
baseball players hit with their bats. However, the limitation of this technique is that the
kick would be less powerful than if an elastic energy were used. Hence, some would prefer
to attach the shaft to a piece of rubber band, and use a motor to stretch it. Then when the
robot is ready to kick, the motor moves into a position such that the rubber band is
released, forcing the shaft to swing towards the ball and kick it out of the robot.

13.7.4 Software Design

Some issues related to the robot software are:

 How would the robot detect walls and opponent robots?
 How should the robot turn?
 When the robot reaches a corner, should it turn right or left? Should it always turn

to one direction or should it alternate, or turn randomly?
 How should randomness be implemented?
 How would the robot detect ball colors?
 How would the robot detect the direction of the goal?
 How should the robot kick?
 What strategy should the robot use against its opponent? Should it be more offen-

sive, defensive, or switch strategies halfway through the match?
 How should the robot move around the arena? Should it move randomly, or

should it move in a certain pattern? If so, what would be the best pattern to ensure
that it covers as much ground as possible?

Given below is a sample pseudo code for the robot playing blue:
Pseudo Code:

WHILE [1] DO BEGIN
[walk in spiral pattern]
IF [contact sensor == TRUE]

THEN BEGIN
[reverse]
[turn left or right]

END

EXAMPLE STUDENT PROJECTS | 371

IF [light sensor == BLUE]
IF [balls collected < 1]

THEN BEGIN
[collect ball]
[sense goal lights]

IF [goal detected == TRUE]
THEN BEGIN

[stop]
[kick]

END
END

IF [light sensor == RED]
IF [time left == 5 minutes]

IF [balls collected < 1]
THEN BEGIN

[collect ball]

[go straight forward]
IF [wall detected]

[release ball]
END

END

The program directs the robot to walk in a spiral pattern, believed by some to be a
good pattern that allows the robot to cover much ground. When a contact sensor returns
TRUE, this indicates that it has either moved against a wall or an opponent, upon which
the robot reverses and either turns right or left, away from the obstacle, before proceeding
with its forward movement. If the light sensor detects a BLUE ball, which is its own color,
it checks to see if it already has a ball within its storage. Otherwise, it collects the ball and
immediately goes in search of the goal. Once the goal is detected, the robot stops and kicks
the ball in. If the light sensor senses a RED ball, the robot checks if there are only 5 min-
utes left in the match. If so, it will switch to a more offensive strategy where it collects an
opponent ball, goes straight forward, expecting to bump into a wall sooner or later. When
it does, it releases the ball. Balls right next to the wall are usually much harder to collect.
This would be the BLUE robot's strategy against the opponent.

13.8 A SMART CARD APPLICATION

Microcontrollers are finding increasing usage in smart cards, which are cards that inte-
grate both memory and a microcontroller within its physical limits. Imagine having a
computer so small that we can wrap it up with a piece of plastic that fits into our wallet:
That's a smart card. Smart cards are being used as national identity cards, driving
licenses, passport information, and electronic cash (e-cash). Since these smart cards
contain personal as well as sensitive financial information, and would be issued to the
public, it is vital that the information contained within it be protected from being
accessed or tampered with by unauthorized parties. The following subsection briefly
describes basic security concepts for a better understanding of how the information
within smart cards can be protected.

372 | CHAPTER 13

13.8.1 Basic Security Concepts

Information security typically requires that confidentiality, authentication, and integrity
to be guaranteed. Confidentiality ensures that only authorized parties can access and view
the information. Authentication proves the identity of a party while integrity allows one to
determine whether information has been modified without permission.

All these are possible by using cryptographic techniques such as encryption,
digital signatures, and message authentication. Encryption is the process of trans-
forming some confidential information into unintelligible form in order to protect it
from being accessed. Standard encryption methods are the Data Encryption Standard
(DES) and its variant, the triple-DES. Incidentally, the latter is also used in many cur-
rent Automatic Teller Machine (ATM) cards to protect the user Personal Identification
Numbers (PINs).

Meanwhile, a digital signature is similar in concept to its physical handwritten coun-
terpart. However, instead of using a handwritten signature or a thumbprint, a digital signa-
ture uses some bits of secret data to prove the identity of a party. Message authentication is
done by using some secret bits of data to perform an operation on the message to obtain
what is called a message authentication code (MAC). This is similar to a checksum and
is used to check if the message has been modified. Since the MAC can only be obtained
when you know the secret data, this ensures that unauthorized parties cannot modify the
message without being detected because the MAC would be different.

13.8.2 Project Description

Recall that in the problems section of the previous chapter, we discussed a very simple
encryption method called the Caesar cipher. We will now consider a slightly more com-
plicated and generalized version, the polyalphabetic cipher. Even so, this encryption
method is also not in use today to protect information because it is very easy to crack by
using computer programs. However, for ease of illustration, we will consider it in this
section, and only touch on currently secure methods in the problems section at the end of
this chapter.
The polyalphabetic cipher is similar to the Caesar cipher except that instead of shifting
the original plaintext set of alphabets a fixed three positions to the left, it is shifted left by
a variable number of positions. For example, shifting by 10 positions to the left, the
plaintext alphabet set would be replaced by a ciphertext alphabet set as follows:
Plaintext alphabets A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Ciphertext alphabets K LM N O P Q R S T U VW X Y ZA B C D E F G H I J
so the message THIS IS SECRET is encrypted into DRSC SC COMBOD.
Design an 8051 microcontroller-based smart card that encrypts by using the polyalpha-
betic cipher, null-terminated messages stored in its EPROM starting at location 1234H.

13.8.3 System Specifications

The smart card system is really quite simple, consisting of just the 8051 and an EPROM,
whether external or built into the microcontroller, in which case we would be using an 8071

EXAMPLE STUDENT PROJECTS | 373

instead of an 8051. We might choose to add in some extra features, for example an LCD
to display both plaintext and ciphertext messages. The components are:

 1 x 8051 microcontroller
 1 x EPROM
 1 x LCD

13.8.4 Software Design

When writing the encryption software, several issues might be:

 How would the number of shifts be determined? Would it be randomly chosen, or
would the user be allowed to specify?

 Are there any number of shifts that should not be permitted? For example, shifting
by 0, 26, 52, or any multiple of 26 positions would cause the ciphertext to be
exactly the same as the ciphertext, resulting in no encryption at all.

Pseudo Code:

BEGIN
[determine number of shifts]
[location = 1234H]
REPEAT

BEGIN

[get character from location]
[encrypt character]

[store back in location]
END

UNTIL [character == NULL]
END

The software is straightforward enough. First, the number of shifts is determined, and the
first location is set to 1234H. The program then gets a character from the current location,
encrypts it with the polyalphabetic cipher and stores the encrypted character back into the
current location, hence overwriting the previously stored character. This is repeated until a
NULL character is detected, indicating the end of the message.

SUMMARY

We have described some advanced 8051-based projects that we feel would be challenging
as well as interesting to students. Possible solutions are discussed in an orderly fashion
starting from a careful study of the project description to a specification of the system
requirements and components. This is followed by a subsection on software design which
considers some programming decisions and the corresponding pseudo code description of
the software.

374 | CHAPTER 13

PROBLEMS

13.1 Draw the schematic diagram for the home security system project in Section 13.2
showing all the connections between the 8051 and the alarm, sensors, seven-
segment display, and external memory chips. Hence, write the software (in
assembly or C) to control this system.

13.2 Draw the schematic diagram for the elevator system project in Section 13.3 show-
ing all the connections between the 8051 and the LEDs, switches, and seven-
segment display.

13.3 Observe the behavior of several elevator systems in your university or any building
near you. In what order do these systems service the elevator requests? Why do you
think such an order is used?

13.4 Draw the schematic diagram for the Tic-Tac-Toe project in Section 13.4 showing
all the connections between the 8051, the keypad, the LEDs, and switches. Hence,
write the software (in assembly or C) for this system.

13.5 Draw the schematic diagram for the calculator project in Section 13.5 showing all
the connections between the 8051 and the keypad, display, LED, and switch.

13.6 Write the assembly language subroutine or C function to perform any two of the
arithmetic operations listed in the project description of the 8051 calculator.

13.7 Draw the schematic diagram for the micromouse project in Section 13.6 showing
all the connections between the 8051 and the motors, sensors, LEDs, and external
memory.

13.8 Give some thought to the problem of programming the micromouse:
a. Testing out all possible paths: In which order do you think they should be

tested out? Nearest branches first, or the furthest? Why?
b. Memorizing previously traversed paths: What do you think is the best way for

the micromouse to achieve this? Why?
13.9 When using smart cards for personal identification, it is often desired that the photo

of the individual also be embedded within the card. However, one limitation of the
smart card is its small memory size. Research currently used techniques of embed-
ding photos into smart cards.

13.10 One day in class, you chance upon a folded piece of paper, written by a certain
classmate to another classmate of the opposite sex. "Interesting," you think to
yourself as the smile on your face widens. But the smile turns to disbelief when you
see that the rest of the message reads as follows:

atih spit idcxywi

You have just learnt about the Caesar cipher in class the other day, so you guess
that the classmate must have used that. But after sitting down and trying to
decipher the message, you find that it was not the Caesar cipher. Nevertheless, you
are sure it must be something similar, just that unlike the Caesar cipher where you
shift by three positions to the right, you do not know how many shifts your
classmate used. A polyalphabetic cipher was used!
Suddenly it dawns on you: use the 8051 to decipher it! Write an 8051 program to
decipher the message.

EXAMPLE STUDENT PROJECTS | 375

Hint: You would need to perform what we call a dictionary attack: Try all possible shifts and
compare each deciphered word with words in a dictionary to see if you get any matches. Once you
get matches for all three words, you have most probably deciphered the message successfully.
Assume that you have a dictionary with 1000 entries including the words of the original message,
and which is represented by the following array of characters:

char * d ic t ionary = { "a" , "ab le " , "about " , . . . } ;

where dictionary [0] gives you "a" , dictionary [1] gives you "able", etc.
Assume all characters are in lowercase, with the ASCII codes given in the table below:

TABLE 13-3 Partial ASCII table

ASCII Code

Character Decimal Hex Binary

a 97 61H 01100001
b 98 62H 01100010

c 99 63H 01100011

d 100 64H 01100100

e 101 65H 01100101

f 102 66H 01100110

g 103 67H 01100111

. . .

Write the pseudo code for such a program.
13.11 Write the corresponding 8051 C solution to Problem 13.10. Hence, use it to decode the message.

13.12 The Advanced Encryption Standard (AES) is a recent encryption standard chosen to replace the
DES and triple-DES in future security applications. Research on how the AES works and write an
8051 program (whether in assembly or C) to implement the AES. A brief description of the AES
is also given in Appendix J.

376 | CHAPTER 13

8051 Derivatives

14.1 INTRODUCTION

Since the advent of the MCS-51TM family of microcontroller ICs, newer and more advanced
versions have sprung up. These 8051 derivatives have additional memory, built-in I/0 such
as ADCs and DACs, and other extended peripherals. In this section, we will briefly review
some of these derivatives.

14.2 MCS-151TM AND MCS-251TM

Intel has produced advanced versions of the MCS-51TM family. These are the MCS-151TM,
with five times increased performance, followed by the MCS-251TM family with 15 times
performance increase. The MCS-251 TM family has an advanced architecture that increases
the efficiency for 8051 C language programming, an extended instruction set that includes
16- and 32-bit arithmetic and logic instructions, plus increased memory size options (see
Table 14-1). Here, One-Time Programmable (OTP) ROM refers to EPROM-like code
memory but without the quartz glass window for erasing the contents. This reduces the
packaging cost but prevents the OTP ROM from being erased with ultraviolet (UV) light;
hence, it can only be programmed once. ROMless versions are also available.

14.3 MICROCONTROLLERS WITH FLASH MEMORY
AND NVRAM

In Chapter 2 we were introduced to the MCS-51TM with different types of on-chip code
memory ranging from the ROMless 8031, through to the 8051 with on-chip ROM, and
the 8751 with on-chip EPROM.

377

378 | CHAPTER 14

TABLE 14-1
Comparison of MCS-251TM ICs

Even with an 8751 which allows the programmer to reprogram it with a PROM pro-
grammer, you would have to first erase it with an ultra-violet (UV) EPROM eraser before
you could program it again. In contrast, the 8951 is an 8051 derivative with on-chip flash
memory that basically works like an EPROM but its contents can be electrically erased by
the PROM programmer itself; hence, it does not require a separate UV-EPROM eraser.
One such manufacturer of the 8951 is Atmel Corporation.'

Besides derivatives that make use of flash memory, others such as Maxim Integrated
Product's2 DS5000 have an NVRAM for code memory. The advantage of NVRAM over
flash memory is that you can change your program in code memory one byte at a time,
instead of having to erase it entirely before reprogramming. The DS5000's NVRAM also
allows programs to be reloaded into code memory even via the PC's serial port, elimi-
nating the need for a separate PROM programmer.

14.4 MICROCONTROLLERS WITH ADCS AND DACS

One of the most common features of 8051 derivatives are the built-in analog-to-digital con-
verters (ADCs) and digital-to-analog converters (DACs) that reduce the need for connecting
to external ADCs and DACs when interfacing the 8051 to analog I/O devices. An example
of such an 8051 derivative is the SAB80C515A microcontroller manufactured by Siemens,
which has a built-in 10-bit ADC. More advanced variants are the collection of 8051 deriva-
tives from Atmel that also function as MP3 players, including the AT89C51SND1C and
AT89C51SND2C that even come with the recently popular USB 1.1 interface to PCs.

14.5 HIGH-SPEED MICROCONTROLLERS

The 8051 runs at 12 clocks per machine cycle. Certain high-speed derivatives such as the
MCS-151TM and MCS-251TM run at only two clocks per machine cycle, and hence are ca-
pable of executing more instructions within a given amount of time.

'Atmel Corporation, 2125 O'Nel Drive, San Jose, CA 95131
2Maxim Integrated Products, Inc. includes the Dallas Semiconductors

8051 DERIVATIVES | 379

Maxim also produces various types of 8051 derivatives, including high-speed micro-
controllers, network microcontrollers, and secure microcontrollers. Its high-speed microcon-
troilers run at four clocks per machine cycle compared to the 8051's 12 clocks, while its ultra
high-speed microcontroller, the DS89C420, runs at one clock per machine cycle. Other en-
hancements over the 8051 include more interrupt sources and increased memory sizes.

14.6 NETWORK MICROCONTROLLERS

The network microcontrollers manufactured by Maxim support various network protocols
such as the Ethernet and Controller Area Network (CAN). Other network microcontrollers
such as the 83751 by Philips3 support the Inter-Integrated Circuit (I2C) network interface
while the COM20051 by Standard Microsystems4 supports the ARCNET token ring net-
work protocol. Such network protocols allow several microcontrollers and other processors
to be connected as a network to share and exchange data. Atmel's ATWebSEG-32 is an
8051 derivative that supports internet connection (TCP/IP) and the Ethernet.

14.7 SECURE MICROCONTROLLERS

In the previous chapter, we had a look at how the 8051 can be used as the brain in smart
cards. This included a discussion of how confidential information could be protected via
software encryption. In fact, encryption can be done by dedicated security hardware, and
several 8051 derivatives such as Maxim's secure 8051 microcontrollers have been pro-
duced to achieve this.

The security system in the smart card that allows encryption, digital signatures,
and message authentication to be performed is commonly called a public-key
infrastructure (PKI). This PKI is commonly embedded within secure microcontrollers
and is supported by hardware peripherals built into these microcontrollers, for instance
Maxim's DS5240, which has a Modulo Arithmetic Accelerator (MAA) to support
modulo arithmetic operations, used extensively in PKIs. Other secure microcontrollers
such as Maxim's DS5000 support hardware encryption of the programs loaded into its
code memory. By encrypting these programs, even if the smart card is tampered with
and its programs accessed without authorization, the attacker would not be able to
understand the meaning of the programs.

SUMMARY

In this chapter, we have described the many derivatives of the 8051. These enhanced ver-
sions of the 8051 typically have better types of on-chip memory, larger memory size,
higher speed, and more built-in peripherals to support interactions with analog I/O devices,
network, and security applications.

3Philips Semiconductors, 811 E. Argues Avenue, Box 3409, Sunnyvale, CA 94088
4Standard Microsystems Corporation, 80 Arkay Drive, Hauppauge, NY 11788

380 | CHAPTER 14

That being said, the final decision of selecting the most suitable 8051 or derivative
for your project depends on a set of criteria such as the amount and type of on-chip ROM
and RAM, speed, as well as advanced I/O, network, and security requirements.

PROBLEMS

14.1 Conduct research on the various 8051 derivative manufacturers and list out other de-
rivatives with built-in ADCs or DACs.

14.2 Conduct research on the 8051 manufacturers and list out other secure microcon-
trollers. Include their security features.

14.3 Are there other enhancements to the 8051 that are not discussed in this chapter? List
out the enhancements if any, and examples of such derivatives.

Quick Reference Chart

MNEMONIC DESCRIPTION MNEMONIC DESCRIPTION

Arithmetic Operations
ADD A,source add source to A
ADD A,#data
ADDC A,source add with carry
ADDC A,#data
SUBB A,source subtract from A
SUBB data with borrow
INC A increment
INC source
DEC A decrement
DEC source
INC DPTR increment DPTR
MUL AB multiply A & B
DIV AB divide A by B
DA A decimal adjust A

Logical Operations
ANL A,source logical AND
ANL A,#data
ANL dlrect,A
ANL direct,#data
ORL A,source logical OR
ORL A,#data
ORL direct,A
ORL direct,#data
XRL A,source logical XOR

XRL A,#data
XRL direct,A
XRL direct,#data
CLR A clear A
CPL A complement A
RL A rotate A left
RLC A (through C)
RR A rotate A right
RRC A (through C)
SWAP A swap nibbles

LEGEND

Rn register addressing using R0-R7
direct 8-bit internal address (00H-0FFH)
@Ri indirect addressing using R0 or R1
source any of [Rn,direct,@Ri]
dest any of [Rn,direct,@Ri]
#data 8-bit constant included in inst.
#data 16 16-bit constant
bit 8-bit direct address of bit
rel signed 8-bit offset
addr11 11-bit address in current 2k page
addr16 16-bit address

FIGURE A-1

Quick reference chart

381

382

Opcode Map

383

3
84

Instruction Definitions1

LEGEND

Symbol Interpretation

 is replaced by ...
() the contents of . . .
(()) the data pointed at by . . .
rrr one of eight registers; 000 = R0, 001 = R1, etc.
dddddddd data bits
aaaaaaaa address bits
bbbbbbbb address of a bit

indirect addressing using R0 (i = 0) or R1 (i = 1)
eeeeeeee 8-bit relative address

ACALL addr11

Function: Absolute Call

Description: ACALL unconditionally calls a subroutine located at the indicated
address. The instruction increments the PC twice to obtain the address
of the following instruction, then pushes the 16-bit result onto the
stack (low-order byte first) and increments the stack pointer twice.
The destination address is obtained by successively concatenating the
five high-order bits of the incremented PC, opcode bits 7-5, and the
second byte of the instruction.

1
Adapted from 8-Bit Embedded Controllers (270645). Santa Clara, CA: Intel Corporation, 1991, by permission

of Intel Corporation.

385

386 | APPENDIX C

The subroutine called must therefore start within the same 2K block of
the program memory as the first byte of the instruction following
ACALL. No flags are affected.

Example: Initially SP equals 07H. The label "SUBRTN" is a program memory
location 0345H. After executing the instruction,

ACALL SUBRTN

at location 0123H, the SP contains 09H, internal RAM locations 08H
and 09H contain 25H and 01H, respectively, and the PC contains
0345H.

Bytes: 2

Cycles: 2

Encoding: aaal000l aaaaaaaa

Note: aaa = A10-A8 and aaaaaaaa = A7-A0 of the
destination address.

Operation: (PC) (PC) + 2

(SP) (SP) + 1

((SP)) (PC7-PC0)

(SP) (SP) + 1

((SP)) (PC15-PC8)

(PC10-PC0) page address

ADD A,<src-byte>

Function: Add

Description: ADD adds the byte variable indicated to the accumulator,leaving the
result in the accumulator. The carry and auxiliary-carry flags are set,
respectively, if there is a carry-out from bit 7 or bit 3, and cleared
otherwise. When adding unsigned integers, the carry flag indicates an
overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-
out of bit 7 but not out of bit 6; otherwise OV is cleared. When adding
signed integers, OV indicates a negative number is produced as the
sum of two positive operands, or a positive sum from two negative
operands.

Four source-operand addressing modes are allowed: register, direct,
register-indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AH
(10101010B). The instruction,

INSTRUCTION DEFINITIONS | 387
ADD A,R0

leaves 6DH (01101110B) in the accumulator with the AC flag cleared
and both the carry flag and OV set to 1.

ADD A,Rn

Bytes: 1

Cycles: 1

Encoding: 00101rrr

Operation: (A) (A) + (Rn)

ADD A,direct

Bytes: 2

Cycles: 1

Encoding: 00100101 aaaaaaaa

Operation: (A) (A) + (direct)

ADD A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0010011i

Operation: (A) (A) + ((Ri))

ADD A,#data

Bytes: 2

Cycles: 1

Encoding: 00100100 dddddddd

Operation: (A) (A) + #data

ADDC A,<src-byte>

Function: Add with Carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag,
and the accumulator contents, leaving the result in the accumulator.
The carry and auxiliary-carry flags are set, respectively, if there is a
carry-out from bit 7 or bit 3, and cleared otherwise. When adding
unsigned integers, the carry flag indicates an overflow occurred.

388 | APPENDIX C

OV is set if there is a carryout of bit 6 but not out of bit 7, or a carry-
out of bit 7 but not out of bit 6; otherwise OV is cleared. When adding
signed integers, OV indicates a negative number is produced as the
sum of two positive operands, or a positive sum from two negative
operands.

Four source-operand addressing modes are allowed: register, direct,
register-indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH
(10101010B) with the carry flag set. The instruction,

ADDC A,Rn

leaves 6EH (01101110B) in the accumulator with AC cleared and both
the carry flag and OV set to 1.

ADDC A,Rn

Bytes: 1

Cycles: 1

Encoding: 00110rrr

Operation: (A) (A) + (C) + (Rn)

ADDC A,direct

Bytes: 2

Cycles: 1

Encoding: 00110101 aaaaaaaa

Operation: (A) (A) + (C) + (direct)

ADDC A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0011011i

Operation: (A) (A) + (C) + (Ri)

ADDC A,#data

Bytes: 2

Cycles: 1

Encoding: 00110100 dddddddd

Operation: (A) (A) + (C) + #data

INSTRUCTION DEFINITIONS | 389

AJMP addr11

Function: Absolute Jump

Description: AJMP transfers program execution to the indicated address, which is
formed at run-time by concatenating the high-order five bits of the PC
(after incrementing the PC twice), opcode bits 7-5, and the second
byte of the instruction. The destination must therefore be within the
same 2K block of program memory as the first byte of the instruction
following AJMP.

Example: The label "JMPADR" is at program memory location 0123H. The
instruction,

AJMP JMPADR

is at location 0345H and loads the PC with 0123H.

Bytes: 2

Cycles: 2

Encoding: aaa0000l aaaaaaaa

Note: aaa = A10-A8 and aaaaaaaa = A7-A0 of the destination address.

Operation: (PC) (PC) + 2

(PC10-PC0) page address

ANL <dest-byte>,<src-byte>

Function: Logical-AND for byte variables

Description: ANL performs the bitwise logical-AND operation between the
variables indicated and stores the results in the destination variable.
No flags are affected.

The two operands allow six addressing mode combinations. When the
destination is the accumulator, the source can use register, direct,
register-indirect, or immediate addressing; when the destination is a
direct address, the source can be the accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value
used as the original port data is read from the output data latch, not the
input pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 55H
(010101011B), then the instruction,

ANL A,R0

leaves 41H (01000001H) in the accumulator.

390 | APPENDIX C

When the destination is a directly addressed byte, this instruction
clears combinations of bits in any RAM location or hardware register.
The mask byte determining the pattern of bits to be cleared is either a
constant contained in the instruction or a value computed in the
accumulator at run-time. The instruction,

ANL P1,#01110011B

clears bits 7, 3, and 2 of output Port 1.

ANL A,Rn

Bytes: 1

Cycles: 1

Encoding: 01011rrr

Operation: (A) (A) AND (Rn)

ANL A,direct

Bytes: 2

Cycles: 1

Encoding: 0101010l aaaaaaaa

Operation: (A) (A) AND (direct)

ANL A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0101011i

Operation: (A) (A) AND ((Ri))

ANL A,#data

Bytes: 2

Cycles: 1

Encoding: 01010100 dddddddd

Operation: (A) (A) AND #data

ANL direct,A

Bytes: 2

INSTRUCTION DEFINITIONS | 391

Cycles: 1

Encoding: 01010010 aaaaaaaa

Operation: (direct) (direct) AND (A)

ANL direct,#data

Bytes: 3

Cycles: 2

Encoding: 01010011 aaaaaaaa dddddddd

Operation: (direct) (direct) AND #data

ANL C,<src-bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical O, then clear the
carry flag; otherwise, leave the carry flag in its current state. A slash (/)
preceding the operand in the assembly language program indicates that the
logical complement of the addressed bit is used as the source value, but the
source bit itself is not affected. No other flags are affected.

Only direct addressing is allowed for the source operand.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, and OV = 0:

MOV C,P1.0 ;LOAD C WITH INPUT PIN STATE
ANL C,ACC.7 ;AND CARRY WITH ACC BIT 7
ANL C,/OV ;AND WITH INVERSE OF OV FLAG

ANL C,bit
Bytes: 2

Cycles: 2

Encoding: 10000010 bbbbbbbb

Operation: (C) (C) AND (bit)

ANL C,bit
Bytes: 2
Cycles:2
Encoding: 10110000 bbbbbbbb

Operation: (C) (C) AND NOT(bit)

392 | APPENDIX C

CALL (See ACALL, or LCALL) CJNE

<dest-byte>,<src-byte>,rel

Function: Compare and Jump if Not Equal

Description: CJNE compares the magnitudes of the first two operands, and
branches if their values are not equal. The branch destination is
computed by adding the signed relative-displacement in the last
instruction byte to the PC, after incrementing the PC to the start of the
next instruction. The carry flag is set if the unsigned integer value of
<dest-byte>is less than the unsigned integer value of <src-byte>;
otherwise, the carry flag is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the
accumulator may be compared with any directly addressed byte or
immediate data, and any indirect RAM location or working register
can be compared with an immediate constant.

Example: The accumulator contains 34H. Register 7 contains 56H. The first
instruction in the sequence

CJNE R7,#60H,NOT_EQ
; ;R7 = 60H

NOTEQ: JC REGROW ;IF R7 < 60H
; ;R7 > 60H
REG LOW ;R7 < 60H

sets the carry flag and branches to the instruction at label NOT_EQ.
By testing the carry flag, this instruction determines whether R7 is
greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the instruction,

WAIT: CJNE A,P1,WAIT

clears the carry flag and continues with the next instruction, since the
accumulator does equal the data read from Port 1. (If some other value
is inputted on P1, the program loops at this point until the P1 data
changes to 34H.)

CJNE A,direct,rel

Bytes: 3

Cycles: 2

Encoding: 1011010l aaaaaaaa eeeeeeee

Operation: (PC) (PC) + 3

INSTRUCTION DEFINITIONS | 393

IF (A)<>(direct)

THEN

(PC) (PC) + relative address

IF (A) <(direct)

THEN

(C) 1

ELSE

(C) 0

CJNE A#data,rel

Bytes: 3

Cycles: 2

Encoding: 10110100 dddddddd eeeeeeee

Operation: (PC) (PC) + 3

IF (A) <> data

THEN

(PC) (PC) + relative address

IF (A) < data

THEN

(C) 1

ELSE

(C) 0

CJNE Rn,#data,rel

Bytes: 3

Cycles: 2

Encoding: 10111rrr dddddddd eeeeeeee

Operation: (PC) (PC) + 3

IF (Rn) <> data

THEN

(PC) (PC) + relative address

IF (Rn)<data

THEN

(C) 1

ELSE

(C) 0

394 | APPENDIX C

CJNE @Ri,#data,rel

Bytes: 3

Cycles: 2

Encoding: 1011011i eeeeeeee

Operation: (PC) (PC) + 3

IF ((Ri)) <> data

THEN

(PC) (PC) + relative address

IF ((Ri)) < data

THEN

(C) 1

ELSE

(C) 0

CLR A

Function: Clear Accumulator

Description: The accumulator is cleared (all bits set to 0). No flags are affected.

Example: The accumulator contains 5CH (01011100B). The instruction,

CLR A

leaves the accumulator set to 00H (00000000B).

Bytes: 1

Cycles: 1

Encoding: 11100100

Operation: (A) 0

CLR bit

Function: Clear bit

Description: The indicated bit is cleared (reset to 0). No other flags are affected.
CLR can operate on the carry flag or any directly addressable bit.

Example: Port 1 has previously been written with 5DH (01011101B). The
instruction,

CLR P1.2

leaves the port set to 59H (01011001B).

INSTRUCTION DEFINITIONS | 395

CLR C

Bytes: 1

Cycles: 1

Encoding: 11000011

Operation: (C) 0

CLR bit

Bytes: 2

Cycles: 1

Encoding: 11000010 bbbbbbbb

Operation: (bit) 0

CPL A

Function: Complement Accumulator

Description: Each bit of the accumulator is logically complemented (Vs
complement). Bits that previously contained a 1 are changed to a 0
and vice versa. No flags are affected.

Example: The accumulator contains 5CH (01011100B). The instruction,

CPL A

leaves the accumulator set to 0A3H (10100011B).

Bytes: 1

Cycles: 1

Encoding: 11110100

Opera t i o n : (A) NOT(A)

CPL bit

Function: Complement bit

Description: The bit variable specified is complemented. A bit that was a 1 is
changed to 0 and vice versa. No other flags are affected. CLR can
operate on the carry or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as
the original data is from the output data latch, not the input pin.

Example: Port 1 has previously been written with 5BH (01011011B). The
instructions,

396 | APPENDIX C

CPL P1.1
CPL P1.2

leave the port set to 5BH (01011011B).

CPL C

Bytes: 1

Cycles: 1

Encoding: 10110011

Operation: (C) NOT(C)

CPL bit

Bytes: 2

Cycles: 1

Encoding: 1010010 bbbbbbbb

Operation: (bit) NOT(bit)

DA A

Function: Decimal-adjust Accumulator for Addition

Description: DA A adjusts the 8-bit value in the accumulator resulting from the
earlier addition of two variables (each in packed-BCD format),
producing two 4-bit digits. Any ADD or ADDC instruction may be
used to perform the addition.

If accumulator bits 3-0 are greater than 9 (xxxx1010-xxxx1111), or if the
AC flag is 1, 6 is added to the accumulator, producing the proper BCD
digit in the low-order nibble. This internal addition sets the carry flag if a
carry-out of the low-order 4-bit field propagated through all high-order
bits, but it does not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed 9
(1010xxxx-1111xxxx), these high-order bits are incremented by 6,
producing the proper BCD digit in the high-order bits, but not clearing the
carry. The carry flag thus indicates if the sum of the original two BCD
variables is greater than 99, allowing precision decimal addition. OV is not
affected.

All of the above occurs during one instruction cycle. Essentially, this
instruction performs the decimal conversion by adding 00H, 06H,

INSTRUCTION DEFINITIONS | 397

60H, or 66H to the accumulator, depending on initial accumulator
and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the
accumulator to BCD notation, nor does DA A apply to decimal
subtraction.

Example: The accumulator holds the value 56H (01010l10B), representing the
packed BCD digits of the decimal number 56. Register 3 contains
the value 67H (01100111B), representing the packed BCD digits of
the decimal 67. The carry flag is set. The instructions,

ADDC A,R3
DA A

first perform a standard 2s-complement binary addi-tion, resulting in
the value 0BEH (1011110B) in the accumulator. The carry and
auxiliary-carry flag are cleared.

The decimal adjust instruction then alters the accu-mulator to the
value 24H (00100100B), indicating the packed BCD digits of the
decimal number 24, the low-order two digits of the decimal sum of
56, 67, and the carry-in. The carry flag is set by the decimal adjust
instruction, indicating that a decimal overflow occurr-ed. The true
sum of 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or
99H. If the accumulator initially holds 30H (representing the digits
30 decimal), then the instructions,

ADD A,#99H

DA A

leave the carry set and 29H in the accumulator, since 30 + 99 = 129.
The low-order byte of the sum can be interpreted to mean 30 - 1 =
29.

Bytes: 1
Cycles: 1
Encoding: 11010100

Operation: (Assume the contents of the accumulator are BCD.)

IF [[(A3-A0)>9] AND [(AC = 1]]

THEN (A3-A0) (A3-A0) + 6

AND

IF [[A7-A4)>9] AND [(C) = 1]]

THEN (A7-A4) (A7-A4) + 6)

398 | APPENDIX C

DEC BYTE

Function: Decrement

Description: The variable indicated is decremented by 1. An original value of 00H
underflows to 0FFH. No flags are affected. Four operand addressing
modes are allowed: accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value
used as the original port data is from the output data latch, not the
input pins.

Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH
and 7FH contain 00H and 40H, respectively. The instructions,

D E C @ R 0
D E C R 0
D E C @ R 0

leave register 0 set to 7EH and internal RAM locations 7EH and 7FH
set to 0FFH and 3FH.

DEC A

Bytes: 1

Cycles: 1

Encoding: 00010100

Operation: (A) (A) - 1

DEC Rn

Bytes: 1

Cycles: 1

Encoding: 00011rrr

Operation: (Rn) (Rn) - 1

DEC direct

Bytes: 2

Cycles: 1

Encoding: 00010101 aaaaaaaa

Operation: (direct) (direct) - 1

INSTRUCTION DEFINITIONS | 399

DEC @Rib

Bytes: 1

Cycles: 1

Encoding: 0001011i

Operation: ((Ri)) ((Ri)) — 1

DIV AB

Function: Divide

Description: DIV AB divides the unsigned 8-bit integer in the accumulator by the
unsigned 8-bit integer in register B. The accumulator receives the
integer part of the quotient; register B receives the integer remainder.
The carry and OV flags are cleared.

Exception: If B originally contained 00H, the values returned in the
accumulator and B-register are undefined and the overflow flag is set.
The carry flag is cleared in any case.

Example: The accumulator contains 251 (0FBH or 11111011B) and B contains 18
(12H or 00010010B). The instruction,

DIV AB

leaves 13 in the accumulator (0DH or 00001101B) and the value 17
(11H or 0001000B) in B, since 251 = 13 x 18 + 17. Carry and OV are
both cleared.

Bytes: 1

Cycles: 4

Encoding: 10000100

Operation: (A) QUOTIENT OF (A)/(B)

(B) REMAINDER OF (A)/(B)

DJNZ <byte>,<rel-addr>

Function: Decrement and Jump if Not Zero

Description: DJNZ decrements the location indicated by the first operand,
andbranches to the address indicated by the second operand if the
resulting value is not 0. An original value of 00H underflows to 0FFH.
No flags are affected. The branch destination is computed by adding
the signed relative-displacement value in the last instruction byte to
the PC, after incrementing the PC to the first byte of the following
instruction.

400 | APPENDIX C

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value
used as the original port data are read from the output data latch, not
the input pins.

Example: Internal RAM locations 40H, 50H, and 60H contain the values 01H,
70H, and 15H, respectively. The instructions,

DJNZ 40H,LABEL1
DJNZ 40H,LABEL2
DJNZ 40H,LABEL3

cause a jump to the instruction at LABEL2 with the values 00H, 6FH,
and 15H in the 3 RAM locations. The first jump is not taken because
the result was 0.

This instruction provides a simple way to execute a program loop a
given number of times, or to add a moderate time delay (from 2 to 512
machine cycles) with a single instruction. The instructions,

MOV R2,#8
TOGGLE: CPL P2.7

DJNZ R2,TOGGLE

toggle P1.7 eight times, causing four output pulses to appear at bit 7 of
output Port 1. Each pulse lasts three machine cycles, two for DJNZ
and one to alter the pin.

DJNZ Rn,rel

Bytes: 2

Cycles: 2

Encoding: 11011rrr eeeeeeee

Operation: (PC) (PC) + 2

(Rn) (Rn) — 1

IF (Rn)0

THEN

(PC) (PC) + byte_2

DJNZ direct,rel

Bytes: 3

Cycles: 2

INSTRUCTION DEFINITIONS | 401

Encoding: 11010101 aaaaaaaa eeeeeeee

Operation: (PC) (PC) + 2

(direct) (direct) — 1

IF (direct) <> 0

THEN

(PC) (PC) + byte_2

INC <byte>

Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFH
overflows to 00H. No flags are affected. Three addressing modes are
allowed: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value
used as the original port data is from the output data latch, not the
input pins.

Example: Register 0 contains 7EH (0111110B). Internal RAM
locations 7EH and 7FH contain 0FFH and 40H, respectively. The
instructions,

INC @R0
INC R0
INC @R0

leave register 0 set to 7FH and internal RAM locations 7EH and 7FH
holding (respectively) 00H and 41H.

INC A

Bytes: 1

Cycles: 1

Encoding: 00000100

Operation: (A) (A) + 1

INC Rn

Bytes: 1

Cycles: 1

Encoding: 00001rrr

Operation: (Rn) (Rn) + 1

402 | APPENDIX C

INC direct

Bytes: 2

Cycles: 1

Encoding: 00000101 aaaaaaaa

Operation: (direct) (direct) + 1

INC @Ri

Bytes: 1

Cycles: 1

Encoding: 0000011i

Operation: ((Ri)) ((Ri)) + 1

INC DPTR

Function: Increment Data Pointer

Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo
216) is performed; an overflow of the low-order byte of the data
pointer (DPL) from 0FFH to 00H increments the high-order byte
(DPH). No flags are affected.

This is the only 16-bit register that can be incremented.

Example: Registers DPH and DPL contain 12H and 0FEH, respectively. The
instructions,

INC DPTR
INC DPTR
INC DPTR

change DPH and DPL to 13H and 01H.

Bytes: 1

Cycles: 2

Encoding: 10100011

Operation: (DPTR) (DPTR) + 1

JB bit, rel

Function: Jump if Bit set

Description: If the indicated bit is a 1, jump to the address indicated; other-
wise, proceed with the next instruction. The branch destination is

INSTRUCTION DEFINITIONS | 403

computed by adding the signed relative-displacement in the third
instruction byte to the PC, after incrementing the PC to the first byte
of the next instruction. The bit tested is not modified. No flags are
affected.

Example: The data present at input port 1 are 11001010B. The accumulator
holds 56H (01010110B). The instructions,

JB P1.2,LABEL1
JB ACC.2,LABEL2

cause program execution to branch to the instruction at LABEL2.

Bytes: 3

Cycles: 2

Encoding: 0100000 bbbbbbbb eeeeeeee

Operation: (PC) (PC) + 3

IF (bit) = 1

THEN

(PC) (PC) + byte_2

JBC bit,rel

Function: Jump if Bit set and Clear bit

Description: If the indicated bit is 1, clear it and branch to the address indicated;
otherwise proceed with the next instruction. The bit is not cleared if it
is already a 0. The branch destination is computed by adding the
signed relative-displacement in the third instruction byte to the PC,
after incrementing the PC to the first byte of the next instruction. No
flags are affected.

Note: When this instruction is used to modify an output port, the value
used as the original port data is read from the output data latch, not the
input pins.

Example: The accumulator holds 56H (01010110B). The instructions,

JBC ACC.3,LABEL1
JBC ACC.2,LABEL2

cause program execution to continue at the instruction identified by
LABEL2, with the accumulator modified to 52H (01010010B).

Bytes: 3

Cycles: 2

Encoding: 00010000 bbbbbbbb eeeeeeee

404 | APPENDIX C

Operation: (PC) (PC) + 3

IF(bit) = 1

THEN

(bit) 0

(PC) (PC) + byte_2

JC rel

Function: Jump if Carry is set

Description: If the carry flag is set, branch to the address indicated; otherwise roceed
with the next instruction. The branch destination is computed by adding
the signed relative-displacement in the second instruction byte to the PC,
after incrementing the PC twice. No flags are affected.

Example: The carry flag is cleared. The instructions,

JC LABEL1
CPL C

JC LABEL2

set the carry, and cause program execution to continue at the
instruction identified by LABEL2.

Bytes: 2

Cycles: 2

Encoding: 01000000 eeeeeeee

Operation: (PC) (PC) + 2

IF (C) = 1

THEN

(PC) + (PC) + byte_2

JMP <dest>(See SJMP, AJMP, or LJMP)

JMP@A+DPTR

Function: Jump indirect

Description: Add the 8-bit unsigned contents of the accumulator with the 16-bit
pointer, and load the resulting sum to the program counter. This is the
address for subsequent instruction fetches. Sixteen-bit addition is
performed (modulo 216): a carry-out from the low-order eight bits
propagates through the higher-order bits. Neither the accumulator nor
the data pointer is altered. No flags are affected.

INSTRUCTION DEFINITIONS | 405

Example: An even number from 0 to 6 is in the accumulator. The following
instructions branch to 1 of 4 AJMP instructions in a jump table
starting at JMP_TBL:

MOV DPTR,#JMP_TBL
JMP @A + DPTR

JMP_TBL: AJMP LABEL0
AJMP LABEL1
AJMP LABEL2
AJMP LABEL3

If the accumulator equals 04H when starting this sequence, execution
jumps to LABEL2. Remember that AJMP is a two-byte instruction, so
the jump instruction starts at every other address.

Bytes: 1

Cycles: 2

Encoding: 01110011

Operation: (PC) (PC) + (A) + (DPIR)

JNB bit,rel

Function: Jump if Bit Not set

Description: If the indicated bit is a 0, branch to the indicated address; otherwise,
proceed with the next instruction. The branch destination is computed by
adding the signed relative-displacement in the third instruction byte to the
PC, after incrementing the PC to the first byte of the next instruction. The
bit tested is not modified. No flags are affected.

Example: The data present at input Port 1 are 110010108. The accumulator holds
56H (01010110B). The instructions,

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

cause program execution to continue at the instruction at LABEL2.

Bytes: 3

Cycles: 2

Encoding: 00110000 bbbbbbbb eeeeeeee

Operation: (PC) (PC) + 3

IF (bit) = 0

THEN

(PC) (PC) + byte_2

406 | APPENDIX C

JNC rel

Function: Jump if Carry not set

Description: If the carry flag is a 0, branch to the address indicated; otherwise,
proceed with the next instruction. The branch destination is computed
by adding the signed relative-displacement in the second instruction
byte to the PC, after incrementing the PC twice to point to the next
instruction. The carry flag is not modified.

Example: The carry flag is set. The instructions,

JNC LABEL1
CPL C
JNC LABEL2

clear the carry flag and cause program execution to continue at the
instruction identified by LABEL2.

Bytes: 2

Cycles: 2

Encoding: 01010000 eeeeeeee

Operation: (PC) (PC) + 2

IF (C) = 0

THEN

(PC) (PC) + b yte_2

JNZ rel

Function: Jump if accumulator Not Zero

Description: If any bit of the accumulator is a 1, branch to the indicated address;
otherwise, proceed with the next instruction. The branch destination is
computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified. No flags are affected.

Example: The accumulator originally holds 00H. The instructions,

JNZ LABEL1
INC A

JNZ LABEL2

set the accumulator to 01H and continue at LABEL2.

Bytes: 2

Cycles: 2

Encoding: 01110000 eeeeeeee

INSTRUCTION DEFINITIONS | 407

Operation: (PC) (PC) + 2

IF (A)<>0

THEN

(PC) (PC) + byte_2

JZ rel

Function: Jump if accumulator Zero

Description: If all bits of the accumulator are 0, branch to the indicated address;
otherwise, proceed with the next instruction. The branch destination is
computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified. No flags are affected.

Example: The accumulator originally holds 01H. The instructions,

JZ LABEL1
DEC A

JZ LABEL2

change the accumulator to 00H and cause program execution to
continue at the instruction identified by LABEL2.

Bytes: 2

Cycles: 2

Encoding: 01100000 eeeeeeee

Operation: (PC) (PC) + 2

IF (A) = 0

THEN

(PC) (PC) + byte_2

LCALL addr16

Function: Long Call to subroutine

Description: LCALL calls a subroutine located at the indicated address. The
instruction adds 3 to the program counter to generate the address of
the next instruction and then pushes the 16-bit result onto the stack
(low-byte first), incrementing the stack pointer by 2. The high-order
and low-order bytes of the PC are then loaded, respectively, with the
second and third bytes of the LCALL instruction. Program execution
continues with the instruction at this address. The subroutine may
therefore begin anywhere in the full 64K-byte program memory
address space. No flags are affected.

408 | APPENDIX C

Example: Initially the stack pointer equals 07H. The label "SUBRTN" is
assigned to program memory location 1234H. After executing the
instruction,

LCALL SUBRTN

at location 0123H, the stack pointer contains 09H, internal RAM
locations 08H and 09H contain 26H and 01H, and the PC contains
1234H.

Bytes: 3

Cycles: 2

Encoding: 00010010 aaaaaaaa aaaaaaaa

Note: Byte 2 contains address bits 16-8, byte 3 contains address bits 7-
0.

Operation: (PC) (PC) + 3

(SP) (SP) + 1

((SP)) (PC7-PC0)

(SP) (SP) + 1

((SP)) (PC15-PC8)

(PC) addr15 - addr0

LJMP addr16

Function: Long Jump

Description: LJMP causes an unconditional branch to the indicated address by
loading the high-order and low-order bytes of the PC (respectively)
with the second and third instruction bytes. The destination may
therefore be anywhere in the full 64K program memory address space.
No flags are affected.

Example: The label "JMPADR" is assigned to the instruction at program
memory location 1234H. The instruction,

LJMP JMPADR

at location 0123H loads the program counter with 1234H.

Bytes: 3

Cycles: 2

Encoding: 00010010 aaaaaaaa aaaaaaaa

Note: Byte 2 contains address bits 16-8, byte 3 contains address bits 7-
0.

Operation: (PC) addr16-addr0

INSTRUCTION DEFINITIONS | 409

MOV<dest-byte>,<src-byte>

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the
location specified by the first operand. The source byte is not affected.
No other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of
source and destination addressing modes are allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location
40H is 10H. The data present at input Port 1 are 11001010B (0CAH).
The instructions,

MOV R0,#30H ;R0 30H
MOV A,@R0 ;A 40H
MOV R1,A; ;R1 40H
MOV B,@R1 ;B 10H
MOV @R1,P1 ;RAM 40H)

; 0CAH
MOVE P2,P1 ;P2 00CAH

leave the value 30H in register 0, 40H in both the accumulator and
register 1, 10H in register B, and 0CAH (11001010B) both in RAM
location 40H and output on Port 2.

MOV A,Rn

Bytes: 1

Cycles: 1

Encoding: 11101ra

Operation: (A) (Rn)

MOV A,direct

Bytes: 2

Cycles: 1

Encoding: 11100101 aaaaaaaa

Operation: (A) (direct)

Note: MOV A,ACC is not a valid instruction.

MOV A,@Ri

Bytes: 1

Cycles: 1

410 | APPENDIX C

Encoding: 1110011i

Operation: (A) ((Ri))

MOV A,#data

Bytes: 2

Cycles: 1

Encoding: 01110100 dddddddd

Operation: (A) #data

MOV Rn,A

Bytes: 1

Cycles: 1

Encoding: 01111rrr

Operation: (Rn) (A)

MOV Rn,direct

Bytes: 2

Cycles: 2

Encoding: 10101rrr

Operation: (Rn) (direct)

MOV Rn,#data

Bytes: 2

Cycles: 1

Encoding: 01111rrr dddddddd

Operation: (Rn) #data

MOV direct,A

Bytes: 2

Cycles: 1

Encoding: 11110101 aaaaaaaa

Operation: (direct) A

INSTRUCTION DEFINITIONS | 411

MOV direct,Rn

Bytes: 2

Cycles: 2

Encoding: 10001m aaaaaaaa

Operation: (direct) (Rn)

MOV direct,direct

Bytes: 3

Cycles: 2

Encoding: 10000101 aaaaaaaa aaaaaaaa

Note: Byte 2 contains the source address;

Byte 3 contains the destination address.

Operation: (direct) (direct)

MOV direct,@Ri

Bytes: 2

Cycles: 2

Encoding: 1000011i aaaaaaaa

Opera t ion : (d i r ec t) ((R i))

MOV direct,#data

Bytes: 3

Cycles: 2

Encoding: 01110101 aaaaaaaa dddddddd

Operat ion: (direct) #data

MOV @Ri,A

Bytes: 1

Cycles: 1

Encoding: 1111011i

Operation: ((Ri)) A

412 | APPENDIX C

MOV @Ri,direct

Bytes: 2

Cycles: 2

Encoding: 1010011i aaaaaaaa

Operation: ((Ri)) (direct)

MOV @Ri,#data

Bytes: 2

Cycles: 1

Encoding: 0111011i dddddddd

Operation: ((Ri)) #data

MOV <dest-bit>,<src-bit>

Function: Move bit variable

Description: The Boolean variable indicated by the second operand is copied into
the location specified by the first operand. One of the operands must
be the carry flag; the other may be any directly addressable bit. No
other register or flag is affected.

Example: The carry flag is originally set. The data present at input Port 2 is
11000101B. The data previously written to output Port 1 are 35H
(00110101B). The instructions,

MOV P1.3,C
MOV C,P3.3
MOV P1.2,C

leave the carry cleared and change Port 1 to 39H (00111001B).

MOV C,bit

Bytes: 2

Cycles: 1

Encoding: 10100010 bbbbbbbb

Operation: (C) (bit)

MOV bit,C

Bytes: 2

INSTRUCTION DEFINITIONS | 413

Cycles: 2

Encoding: 10010010 bit address

Operation: (bit) (C)

MOV DPTR,#data16

Function: Load Data Pointer with a 16-bit constant

Description: The data pointer is loaded with the 16-bit constant indicated. The 16-bit
constant is located in the second and third bytes of the instruction.
The second byte (DPH) is the high-order byte, while the third byte
(DPL) holds the low-order byte. No flags are affected.

Example: The instruction,

MOV DPTR,#1234H

loads the value 1234H into the data pointer: DPH holds 12H and
DPL holds 34H.

Bytes: 3

Cycles: 2

Encoding: 10010000 dddddddd dddddddd

Note: Byte 2 contains immediate data bits 15-8, byte 3 contains bits
7-0.

Operation: (DPTR) #data 16

MOVC A,@A+<base-reg>

Function: Move code byte or constant byte.

Description: The MOVC instructions load the accumulator with a code byte or
constant byte from program memory. The address of the byte
fetched is the sum of the original unsigned 8-bit accumulator
contents and the contents of a 16-bit base register, which may be
either the data pointer or the PC. In the latter case, the PC is
incremented to the address of the following instruction before being
added to the accumulator; otherwise, the base register is not altered.
Sixteen-bit addition is performed so a carryout from the low-order 8
bits may propagate through higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the accumulator. The following
subroutine translates the value in the accumulator to 1 of 4 values
defined by the DB (define byte) directive.

REL_PC: INC A
MOVC A,@A + PC
RET
DB 66H

414 | APPENDIX C

DB 77H
DB 88H
DB 99H

If the subroutine is called with the accumulator equal to 01H, it
returns with 77H in the accumulator. The INC A before the MOVC
instruction is needed to "get around" the RET instruction above the
table. If several bytes of code separate the MOVC from the table, the
corresponding number should be added to the accumulator instead.

MOVC A,@A+DPTR

Bytes: 1

Cycles: 2

Encoding: 10010011

Operation: (A) ((A) + (DPTR))

MOVC A,@A+PC

Bytes: 1

Cycles: 2

Encoding: 10000011

Operation: (PC) (PC) + 1

(A) ((A) + (PC))

MOVX <dest-byte>,<src-byte>

Function: Move External

Description: The MOVX instructions transfer data between the accumulator and a
byte of external data memory; hence the "X" appended to the MOV.
There are two types of instructions, differing in whether they provide
an 8-bit or 16-bit indirect address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank
provide an 8-bit address multiplexed with data on P0. Eight bits are
sufficient for external I/O expansion decoding or for a relatively
small RAM array. For somewhat larger arrays, any output port pins
can be used to output higher-order address bits. These pins would be
controlled by an output instruction preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a
16-bit address. P2 outputs the high-order eight address bits (the
contents of DPH), while P0 multiplexes the low-order eight bits
(DPL) with data. The P2 special function register retains its previous

INSTRUCTION DEFINITIONS | 415

contents while the P2 output buffers are emitting the contents of
DPH. This form is faster and more efficient when accessing very
large data arrays (up to 64K bytes), since no additional instructions
are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large
RAM array with its high-order address lines driven by P2 can be
addressed via the data pointer, or with code to output high-order address
bits to P2 followed by a MOVX instruction using R0 or R1.

Example: An external 256-byte RAM using multiplexed address/data lines
(e.g., an Intel 8155 RAM/I/O/TIMER) is connected to the 8051 Port
0. Port 3 provides control lines for the external RAM. Ports 1 and 2
are used for normal 1/O. Registers 0 and 1 contain 12H and 34H.
Location 34H of the external RAM holds the value 56H. The
instruction sequence

MOVX A,@Ri
MOVX @R0,A

copies the value 56H into both the accumulator and external RAM
location 12H.

MOVX A,@Ri

Bytes: 1

Cycles: 2

Encoding: 1110001i

Operation: (A) ((Ri))

MOVX A,@DPTR

Bytes: 1

Cycles: 2

Encoding: 11100000

Operation: (A) ((D P T R))

MOVX @Ri,A

Bytes: 1

Cycles: 2

Encoding: 11110011

Operation: ((Ri)) (A)

416 | APPENDIX C

MOVX @DPTR,A

Bytes: 1

Cycles: 2

Encoding: 11110000

Operation: (DPTR) (A)

MUL AB

Function: Multiply

Description: MUL AB multiplies the unsigned 8-bit integers in the accumulator
and register B. The low-order byte of the 16-bit product is left in the
accumulator, and the high-order byte in B. If the product is greater
than 255 (0FFH), the overflow flag is set; otherwise it is cleared.
The carry flag is always cleared.

Example: Originally the accumulator holds the value 80 (50H). Register B
holds the value 160 (0A0H). The instruction,

MUL AB

gives the product 12,800 (3200H), so B is changed to 32H
(00110010B) and the accumulator is cleared. The overflow flag is
set, and carry is cleared.

Bytes: 1

Cycles: 4

Encoding: 10100100

Operation: (B) HIGH BYTE OF (A) x (B)

(A) LOW BYTE OF (A) x (B)

NOP

Function: No Operation

Description: Execution continues at the following instruction. Other than the PC,
no register or flags are affected.

Example: It is desired to produce a low-going output pulse on bit 7 of Port 2
lasting exactly five cycles. A simple SETB/CLR sequence generates
a one-cycle pulse, so four additional cycles must be inserted. This
may be done (assuming no interrupts are enabled) with the
instructions,

CLR P2.7
NOP

INSTRUCTION DEFINITIONS | 417

NOP
NOP
NOP
SETB P2.7

Bytes: 1

Cycles: 1

Encoding: 00000000

Operation: (PC) (PC) + 1

ORL <dest-byte>,<src-byte>

Function: Logical-OR for byte variables

Description: ORL performs the bitwise logical-OR operation between the
indicated variables, storing the results in the destination byte. No
flags are affected.

The 2 operands allow 6 addressing mode combinations. When the
destination is the accumulator, the source can use register, direct,
register-indirect, or immediate addressing; when the destination is a
direct address, the source can be the accumulator or immediate data.

Note: When this instruction is used to modify an output port, the
value used as the original port data is read from the output data latch,
not the input pins.

Example: If the accumulator holds 0C3H (11000011B) and R0 holds 55H
(01010101) then the instruction,

ORL A,R0

leaves the accumulator holding the value 0D7H (11010111B).When
the destination is a directly addressed byte, the instruction can set
combinations of bits in any RAM location or hardware register. The
pattern of bits to be set is determined by a mask byte, which may be
either a constant data value in the instruction or a variable computed
in the accumulator at run-time. The instruction,

ORL P1,00110010B

sets bits 5, 4, and 1 of output Port 1.

ORL A,Rn

Bytes: 1

Cycles: 1

418 | APPENDIX C

Encoding: 01001m

Operation: (A) (A) OR (Rn)

ORL A,direct

Bytes: 2

Cycles: 1

Encoding: 01000101 aaaaaaaa

Operation: (A) (A) OR (direct)

ORL A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0100011i

Operation: (A) (A) OR ((Ri))

ORL A,#data

Bytes: 2

Cycles: 1

Encoding: 01000100 dddddddd

Operation: (A) (A) OR #data

ORL direct,A

Bytes: 2

Cycles: 1

Encoding: 01000010 aaaaaaaa

Operation: (direct) (direct) OR (A)00

ORL direct,#data

Bytes: 3

Cycles: 2

Encoding: 01000011 aaaaaaaa dddddddd

Operation: (direct) (direct) OR #data

INSTRUCTION DEFINITIONS | 419

ORL C,<src-bit>

Function: Logical-OR for bit variables

Description: Set the carry flag if the Boolean value is a logical 1; leave the carry
in its current state otherwise. A slash (/) preceding the operand in the
assembly language indicates that the logical complement of the
addressed bit is used as the source value, but the source bit itself is
not affected. No other flags are affected.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, or OV = 0.

MOV C,P1.0 ;LOAD CY WITH INPUT PIN Pi.0
ORL C,ACC.7 ;OR CY WITH THE ACC, BIT7
ORL C,/OV ;OR CY WITH INVERSE OF OV

ORL C,bit

Bytes: 2

Cycles: 2

Encoding: 01110010 bbbbbbbb

Operation: (C) (C) OR (bit)

ORL C,/bit

Bytes: 2

Cycles: 2

Encoding: 10100000 bbbbbbbb

Operation: (C) (C) OR NOT(bit)

POP direct

Function: Pop from stack

Description: The contents of the internal RAM location addressed by the stack
pointer are read, and the stack pointer is decremented by 1. The
value read is then transferred to the directly addressed byte
indicated. No flags are affected.

Example: The stack pointer originally contains the value 32H, and internal
RAM locations 30H through 32H contain the values 20H, 23H, and
01H, respectively. The instructions,

POP DPH
POP DPL

420 | APPENDIX C

leave the stack pointer equal to the value 30H and the data pointer
set to 0123H. At this point the instruction,

POP SP

leaves the stack pointer set to 20H. Note that in this special case the
stack pointer is decremented to 2FH before being loaded with the
value popped (20H).

Bytes: 2

Cycles: 2

Encoding: 11010000 aaaaaaaa

Operation: (direct) ((SP))

(SP) (SP) — 1

PUSH direct

Function: Push onto stack

Description: The stack pointer is incremented by 1. The contents of the indicated
variable are then copied into the internal RAM location addressed by
the stack pointer. Otherwise, no flags are affected.

Example: On entering an interrupt routine, the stack pointer contains 09H. The
data pointer holds the value 0123H. The instructions,

PUSH DPL
PUSH DPH

leave the stack pointer set to 0BH and store 23H and 01H in internal
RAM locations 0AH and 0BH, respectively.

Bytes: 2

Cycles: 2

Encoding: 11000000 aaaaaaaa

Operation: (SP) (SP) + 1

((SP)) (direct)

RET

Function: Return from subroutine

Description: RET pops the high- and low-order bytes of the PC successively from
the stack, decrementing the stack pointer by 2. Program execution
continues at the resulting address, generally the instruction immediately
following an ACALL or LCALL. No flags are affected.

INSTRUCTION DEFINITIONS | 421

Example: The stack pointer originally contains the value 0BH. Internal RAM
locations 0AH and 0BH contain the values 23H and 01H,
respectively. The instruction,

RET

leaves the stack pointer equal to the value 09H. Program execution
continues at location 0123H.

Bytes: 1

Cycles: 2

Encoding: 00100010

Operation: (PC1-PC8) ((SP))

(SP) (SP) — 1

(PC7-PC0) ((SP))

(SP) (SP) — 1

RETI

Function: Return from interrupt

Description: RETI pops the high- and low-order bytes of the PC successively
from the stack and restores the interrupt logic to accept additional
interrupts at the same priority level as the one just processed. The stack
pointer is left decremented by 2. No other registers are affected; the PSW
is not automatically restored to its preinterrupt status. Program execution
continues at the resulting address, which is generally an instruction
immediately after the point at which the interrupt request is detected. If a
lower- or same-level interrupt is pending when the RETI instruction is
executed, then one instruction is executed before the pending interrupt is
processed.

Example: The stack pointer originally contains the value 0BH. An interrupt is
detected during the instruction ending at location 0123H. Internal
RAM locations 0AH and 0BH contain the values 23H and 01H,
respectively. The instruction,

RETI

leaves the stack pointer equal to 09H and returns program execution
to location 0123H.

Bytes: 1

Cycles: 2

Encoding: 00110010

Operation: (PC15-PC8) ((SP))

422 | APPENDIX C

(SP) (SP) — 1

(PC7-PC0) ((SP))

(SP) (SP) — 1

RL A

Function: Rotate Accumulator Left

Description: The eight bits in the accumulator are rotated one bit to the left. Bit 7
is rotated into the bit 0 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction,

RL A

leaves the accumulator holding the value 8BH (10001011B) with the
carry unaffected.

Bytes: 1

Cycles: 1

Encoding: 00100011

Operation: (An + 1) (An), n = 0-6

(A0) (A7)

RLC A

Function: Rotate Accumulator Left through the Carry flag

Description: The eight bits in the accumulator and the carry flag are together rotated one
bit to the left. Bit 7 moves into the carry flag; the original state of the carry
flag moves into the bit 0 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), and the carry is 0.
The instruction,

RLC A

leaves the accumulator holding the value 8BH (10001011B) with the
carry set.

Bytes: 1

Cycles: 1

Encoding: 00110011

Operation: (An + 1) (An), n = 0-6

INSTRUCTION DEFINITIONS | 423

(A0) (C)

(C) (A7)

RR A

Function: Rotate Accumulator Right

Description: The eight bits in the accumulator are rotated one bit to the right. Bit
0 is rotated into the bit 7 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B) with the carry
unaffected. The instruction,

RR A

leaves the accumulator holding the value 0E2H (11100010B) with
the carry unaffected.

Bytes: 1

Cycles: 1

Encoding: 00000011

Operation: (An) (An+1), n = 0 — 6

(A7) (A0)

RRC A

Function: Rotate Accumulator Right through Carry flag

Description: The eight bits in the accumulator and the carry flag are together
rotated one bit to the right. Bit 0 moves into the carry flag; the
original value of the carry flag moves into the bit 7 position. No
other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), the carry is 0.
The instruction,

RRC A

leaves the accumulator holding the value 62H (01100010B) with the
carry set.

Bytes: 1

Cycles: 1

Encoding: 00010011

Operation: (An) (An + 1), n = 0 — 6

(A7) (C)

(C) (A0)

424 | APPENDIX C

SETB <bit>

Function: Set Bit

Description: SETB sets the indicated bit to 1. SETB can operate on the carry flag or
any directly addressable bit. No other flags are affected.

Example: The carry flag is cleared. Output Port 1 has been written with the
value 34H (00110100B). The instructions,

SETB C
SETB P1.0

leave the carry flag set to 1 and change the data output on Port 1 to
35H (00110101B).

SETB C

Bytes: 1

Cycles: 1

Encoding: 11010011

Operation: (C) 1

SETB bit

Bytes: 2

Cycles: 1

Encoding: 11010010 bbbbbbbb

Operation: (bit) 1

SJMP rel

Function: Short Jump

Description: Program control branches unconditionally to the address indicated.
The branch destination is computed by adding the signed
displacement in the second instruction byte to the PC after
incrementing the PC twice. Therefore, the range of destinations
allowed is from 128 bytes preceding this instruction to 127 bytes
following it.

Example: The label "RELADR" is assigned to an instruction at program
memory location 0123H. The instruction,

SJMP RELADR

assembles into location 0100H. After the instruction is executed, the
PC contains the value 0123H.

INSTRUCTION DEFINITIONS | 425

(Note: Under the above conditions, the instruction following SJMP is
at 0102H. Therefore, the displacement byte of the instruction is the
relative offset (0123H - 0102H = 21H. Put another way, an SJMP
with a displacement of 0FEH is a 1-instruction infinite loop.)

Bytes: 2

Cycles: 2

Encoding: 10000000 eeeeeeee

Operation: (PC) (PC) + 2

(PC) (PC) + byte_2

SUBB A,<src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together
from the accumulator, leaving the result in the accumulator. SUBB
sets the carry (borrow) flag if a borrow is needed for bit 7 and clears
C otherwise. (If C is set before executing a SUBB instruction, this
indicates that a borrow is needed for the previous step in a multiple-
precision subtraction, so the carry is subtracted from the accumulator
along with the source operand.) AC is set if a borrow is needed for
bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not into bit 7, or into bit 7, but not into bit 6.

When subtracting signed integers, OV indicates that a negative
number is produced when a negative value is subtracted from a
positive value, or a positive number is produced when a positive
number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct,
register-indirect, or immediate.

Example: The accumulator holds 0C9H (11001001B), register 2 holds 54H
(01010100B), and the carry flag is set. The instruction,

SUBB A,R2

leaves the value 74H (01110100B) in the accumulator, with the carry
flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this
and the above result is due to the carry (borrow) flag being set before
the operation. If the state of the carry is not known before starting a
single or multiple-precision subtraction, it should be explicitly
cleared by a CLR C instruction.

426 | APPENDIX C

SUBB A,Rn

Bytes: 1

Cycles: 1

Encoding: 10011rrr

Operation: (A) (A) — (C) — (Rn)

SUBB A,direct

Bytes: 2

Cycles: 1

Encoding: 10010101 aaaaaaaa

Operation: (A) (A) — (C) — (direct)

SUBB A,@Ri

Bytes: 1

Cycles: 1

Encoding: 1001011i

Operation: (A) (A) — (C) — ((Ri))

SUBB A,#data

Bytes: 2

Cycles: 1

Encoding: 10010100 dddddddd

Operation: (A) (A) — (C) — #data

SWAP A

Function: Swap nibbles within the Accumulator

Description: SWAP A interchanges the low- and high-order nibbles (4-bit fields) of the
accumulator (bits 3-0 and bits 7-4). The operation can also be thought
of as a 4-bit rotate instruction. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The
instruction,

SWAP A

leaves the accumulator holding the value 5CH (01011100B).

INSTRUCTION DEFINITIONS | 427

Bytes: 1

Cycles: 1

Encoding: 11000100

Operation: (A3-A0)(A7-A4)

XCH A,<byte>

Function: Exchange Accumulator with byte variable

Description: XCH loads the accumulator with the contents of the indicated
variable, at the same time writing the original accumulator contents
to the indicated variable. The source/destination operand can use
register, direct, or register-indirect addressing.

Example: R0 contains the address 20H. The accumulator holds the value 3FH
(00111111B). Internal RAM location 20H holds the value 75H
(01110101B). The instruction,

XCH A,@R0

leaves RAM location 20H holding the values 3FH (00111111B) and
75H (01110101B) in the accumulator.

XCH A,Rn

Bytes: 1

Cycles: 1

Encoding: 11001rr

Operation: (A) (Rn)

XCH A,direct

Bytes: 2

Cycles: 1

Encoding: 11000101 aaaaaaaa

Operation: (A) (direct)

XCH A,@Ri

Bytes: 1

Cycles: 1

428 | APPENDIX C

Encoding: 1100011i

Operation: (A) ((Ri))

XCHD A,@R0

Function: Exchange Digit

Description: XCHD exchanges the low-order nibble of the accumulator (bits 0-3),
generally representing a hexadecimal or BCD digit, with that of the
internal RAM location indirectly addressed by the specified register.
The high-order nibbles (bits 7-4) of each register are not affected. No
flags are affected.

Example: R0 contains the address 20H. The accumulator holds the value 36H
(00110110B). Internal RAM location 20H holds the value 75H
(011110101B). The instruction,

XCHD A,@R0

leaves RAM location 20H holding the value 76H (01110110B) and
35H (00110101B) in the accumulator.

Bytes: 1

Cycles: 1

Encoding: 1101011i

Operation: (A3-A0) ((Ri3-Ri0))

XRL<dest-byte>,<src-byte>

Function: Logical Exclusive-OR for byte variables

Description: XRL performs the bitwise logical exclusive-OR operation between
the indicated variables, storing the results in the destination. No
flags are affected.

The two operands allow six addressing mode combinations. When
the destination is the accumulator, the source can use register, direct,
register-indirect, or immediate addressing; when the destination is a
direct address, the source can be the accumulator or immediate data.

Note: When this instruction is used to modify an output port, the
value used as the original port data is read from the output data latch,
not the input pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds
0AAH (10101010B), then the instruction,

INSTRUCTION DEFINITIONS | 429

XRL A,Rn

leaves the accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction
can complement combinations of bits in any RAM location or
hardware register. The pattern of bits to be complemented is then
determined in the accumulator at run-time. The instruction,

XRL P1,#00110001B

complements bits 5, 4, and 0 of output Port 1.

XRL A,Rn

Bytes: 1

Cycles: 1

Encoding: 01101rrr

Operation: (A) (A) (Rn)

XRL A,direct

Bytes: 2

Cycles: 1

Encoding: 01100101 aaaaaaaa

Operation: (A) (A) (direct)

XRL A,@R0

Bytes: 1

Cycles: 1

Encoding: 0110011i

Operation: (A) (A) ((Ri))

XRL A,#data

Bytes: 2

Cycles: 1

Encoding: 01100100 dddddddd

Operation: (A) (A) #data

430 | APPENDIX C

XRL direct,A

Bytes: 2

Cycles: 1

Encoding: 01100010 aaaaaaaa

Operation: (direct) (direct) (A)

XRL direct,#data

Bytes: 3

Cycles: 2

Encoding: 01100011 aaaaaaaa dddddddd

Operation: (direct) (direct) #data

Special Function Registers 1

The 8051's special function registers are shown in the SFR memory map in Figure D-1.
Blank locations are reserved for future products and should not be written to. The SFRs
identified with an asterisk contain bits that are defined as mode or control bits. These reg-
isters and their bit definitions are described on the following pages.

Some bits are identified as "not implemented." User software should not write 1s to
these bits, since they may be used in future MCS51

TM
products to invoke new features.

In that case, the reset or inactive value of the new bit will be 0, and its active value will
be 1.

PCON (POWER CONTROL REGISTER)

Symbol: PCON

Function: Power control and miscellaneous features

Bit Address: 87H

Bit-Addressable: No

Summary:

7 6 5 4 3 2 1 0

SMOD - - - GF1 GF0 PD IDL

1
Adapted from 8-Bit Embedded Controllers (270645). Santa Clara, CA: Intel Corporation, 1991, by permission

OF intel corporation.

431

432 | APPENDIX D

Bit Definitions:
Bit Bit
Symbol Description

SMOD Double baud rate. If timer 1 is used to generate baud rate and SMOD = 1,
the baud rate is doubled when the serial port is used in modes 1, 2, or 3.

—Not implemented; reserved for future use.

—Not implemented; reserved for future use.

—Not implemented; reserved for future use.

GF1 General purpose flag bit 1.

GF0 General purpose flag bit 0.

PD Power down bit. Setting this bit activates power down operation in the
CMOS version of the 8051.2

IDL Idle mode bit. Setting this bit activates idle mode operation in the CMOS
versions of the 8051.2

8 Bytes

B

A C C

P S W *

T 2 C O N * RCAP2L RCAP2H T L 2 T H 2

I P *

P 3

I E *

P 2

S C O N * S B U F

P 1

T C O N * T M O D * T L 0 T L 1 T H 0 T H 1

F8

F0

E8

E0

D8

D0

C8

C0

B8

B0

A8

A0

98

90

88

80 P 0 S P D P L D P H P S W *

FF

F7

EF

E7

DF

D7

CF

C7

BF

B7

AF

A7

9F

97

8F

87

Bit *SFRs containing mode or controll bits
addressable

FIGURE D-P3

Special function register memory map

2
1f 1s are writen to PD and IDL at the same time, PD take precedence

SPECIAL FUNCTION REGISTERS | 433

TCON (TIMER/COUNTER CONTROL REGISTER)

Symbol: TCON

Function: Timer/Counter Control

Bit Address: 88H

Bit-Addressable: Yes

Summary:

7 6 5 4 3 2 1 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Bit Definitions:
Bit Bit
Symbol Position Address Description

TF1 TCON.7 8FH Timer 1 overflow flag. Set by hardware when
the timer/counter 1 overflow, cleared by
software or by hardware as processor vectors
to the interrupt service routine.

TR1 TCON.6 8EH Timer 1 run control bit. Set/cleared by
software to turn timer/counter 1 ON/OFF.

TF0 TCON.5 8DH Timer overflow flag. (See TF1)

TR0 TCON.4 8CH Timer 0 run control fit. (See TR1)

IE1 TCON.3 8BH External interrupt 1 edge flag. Set by hardware
when external interrupt edge is detected;
cleared by hardware when interrupt is
processe.

IT1 TCON.2 8AH Interrupt 1 type control bit. Set/cleared by
software to specify failing-edge/low-level
triggered exteITll interrupt.

IE0 TCON.1 89H External interrupt 0 edge flag. (See IE1)

IT0 TCON.0 88H Interrupt 0 type control bit. (See IT1)

SCON (SERIAL CONTROL REGISTER)

Symbol: SCON

Function: Serial Port Control

Bit Address: 98H

Bit-Addressable: Yes

434 | APPENDIX D

TABLE D-1

SM0 SM1 Mode Description Baud Rate

0 0 0 Shift Register FOSC ¸ 12*
0 1 1 8-bit UART Variable
1 0 2 9-bit UART FOSC¸ 64 or FOSC ¸ 32

1 1 3 9SMt UART Variable

*FOSC
is the oscillator frequency of the 8051 IC. Typically, this is derived from a crystal source of 12 MHz.

Summary:

7 6 5 4 3 2 1 0

SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit Definition
Bit Bit
Symbol Position Address Description

SM0 SCON.7 9FH Serial port mode bit 0. (See Table D-l)

SM1 SCON.6 9EH Serial port mode bit 1. (See Table D-l)

SM2 SCON.5 9DH Serial port mode bit 2. Enable the
multiprocessor communication feature in
modes 2 and 3. In mode 2 or 3, if SM2 is set to
1, then RI will not be activated if the received
ninth data bit (RB8) is 0. In mode l, if SM2 =
l, then RI will not be activated if a valid stop
bit was not received. In mode 0, SM2 should
be 0.

REN SCON.4 9CH Receiver enable. Set/cleared by software to
enable/disable reception.

TB8 SCON.3 9BH Transmit bit 8. The ninth bit that will be
transmitted in modes 2 and 3. Set/cleared by
software.

RB8 SCON.2 9AH Receive bit 8. In modes 2 and 3, RB8 is the
ninth data bit that was received. In mode 1, if
SM2 = 0, RB8 is the stop bit that was
received. In mode 0, TB8 is not used.

TI SCON.1 99H

.

Transmit interrupt. Set by hardware at the end
of the eighth bit time in mode 0, or at the
beginning of the stop bit in the other modes.
Must be cleared by software .

SPECIAL FUNCTION REGISTERS | 435

RI SCON.0 98H Receive interrupt. Set by hardware at the end of
the eighth bit time in mode 0, or halfway through
the stop bit time in the other modes (except see
SM2). Must be cleared by software.

IE (INTERRUPT ENABLE REGISTER)

Symbol: IE

Function: Interrupt Enable

Bit Address: A8H

Bit-Addressable: Yes

Summary:

7 6 5 4 3 2 1 0

EA — ET2 ES ET1 EX1 ET0 EX0

Bit Definitions:

Bit Bit

Symbol Position Address Description 1=enable, 0=disable)

EA IE.7 0AFH Enable/disable all interrupts. If EA = 0, no
interrupt will be acknowledged. If EA = 1,
each interrupt source is individually enabled
or disabled by setting or clearing its enable
bit

— IE.6 0AEH Not implemented; reserved for future use.

ET2 IE.5 0ADH Enable/disable timer 2 overflow or capture
interrupt (80 X 2 only).

ES IE.4 0ACH Enable/disable serial port interrupt.

ET1 IE.3 0ABH Enable/disable timer 1 overflow interrupt.

EX1 IE.2 0AAH Enable/disable external interrupt 1.

ET0 IE.1 0A9H Enable/disable timer 0 overflow interrupt.

EX0 IE.0 0A8H Enable/disable external interrupt 0.

IP (INTERRUPT PRIORITY REGISTER)

Symbol: IP

Function: Interrupt Priority

436 | APPENDIX D

Bit Address: 0B8H

Bit-Addressable: Yes

Summary:

7 6 5 4 3 2 1 0

– – PT2 PS PT1 PX1 PT0 PX0

Bit Definitions:
Bit Bit Description

Symbol Position Address (1 = high priority, 0 = low priority)

— P.7 0BFH Not implemented reserved for future use.

— IP.6 0BEH Not implemented; reserved for future use.

PT2 IP.5 0BDH Timer 2 interrupt priority level (80 X 2 only).

PS IP.4 0BCH Serial port interrupt priority level.

PT1 IP.3 0BBH Timer 1 interrupt priority level.

PX1 IP.2 0BAH External interrupt 1 priority level.

PT0 IP.1 0B9H Timer 0 interrupt priority level.

PX0 IP.0 0B8H External interrupt 0 priority level.

T2CON (TIMER/COUNTER 2 CONTROL REGISTER)

SyIP.H: T2CON

Function: Timer/Counter 2 Control

Bit Address: C8H

Bit-Addressable: Yes

Summary:

7 6 5 4 3 2 1 0

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

Bit Definitions:
Bit Bit

Symbol Position Address Description

TF2 T2CON.7 0CFH Timer 2 overflow flag. Set by hardware and
cleared by software. TF2 cannot be set when
either RCLK = 1 or TCLK = 1.

SPECIAL FUNCTION REGISTERS | 437

EXF2 T2CON.6 0CEH
Timer 2 external flag. Set when either a
capture or reload is caused by a negative
transition on T2EX and EXEN2 = 1. When
timer 2 interrupt is enabled, EXF2 = 1 will
cause the CPU to vector to the timer interrupt
service routine. EXF2 must be cleared by
software.

RCLK T2CON.5 0CDH Receive clock. When set, causes the serial port
to use timer 2 overflow pulses for its receive
clock in modes 1 and 3. RCLK = 0 causes
timer 1 overflow to be used for the receive
clock.

TCLK T2CON.4 0CCH Transmit clock. When set, causes the serial
port to use timer overflow pulses for its
transmit clock in modes 1 and 3. TCLK = 0
causes timer 1 overflows to be used for the
transmit clock.

EXEN2 T2CON.3 0CBH Timer 2 external enable flag. When set, allows
a capture of reload to occur as a result of
negative transition on T2EX if timer 2 is not
being used to clock to serial port. EXEN2 = 0
causes timer 2 to ignore events at T2EX.

TR2 T2CON.2 0CAH Timer 2 run bit. Software START/STOP
control for timer 2; A logic 1 starts the timer.

C/T2 T2CON.1 0C9H Counter/timer select for timer 2. 0 = internal
timer, 1 = external event counter (falling edge
triggered).

CP/RL2 T2CON.0 0C8H Capture/reload flag. When set captures will
occur on negative transitions at T2EXCPIRL2

EXEN2 = 1. When cleared, auto-reloads will
occur either with timer 2 overflows or on
negative transitions at T2EX when EXEN2 =
1. When either RCLK = 1 or TCLK = 1, this
bit is ignored and the timer is forced to
autoreload on timer 2 overflows.

PSW (PROGRAM STATUS WORD)

Symbol: PSW

Function: Program Status

Bit Address: 0D0H

Bit Addressable: Yes

438 | APPENDIX D

TABLE D-2

RS1 RS0 Bank Active Addresses

0 0 0 00H-07H
0 1 1 08H-0FH
1 0 2 10H-17H
1 1 3 18H-1FH

Summary:

7 6 5 4 3 2 1 0

CY AC F0 RS1 RS1 OV — P

Bit Definitions:

Bit Bit

Symbol Position Address Description

CY PSW.7 0D7H Carry flag. Set if there is a carry-out of bit 7 during
an add, or set if there is a borrow into bit 7 during
a subtract.

AC PSW.6 0D6H Auxiliary carry flag. Set during add instructions if
there is a carry-out of bit 3 into bit 4 or if the result in
the lower nibble is in the range 0AH to 0FH.

F0 PSW.5 0D5H Flag 0. Available to the user for general purposes.

RS1 PSW.4 0D4H Register bank select bit 1. (See Table D-2)

RS0 PSW.3 0D3H Register bank select bit 0. (See Table D-2)

OV PSW.2 0D2H Overflow flag. Set after an addition or subtraction
operation if there was anarithmetic overflow (i.e.,
the signed result is greater than 127 or less than -
128).

— PSW.1 0D1H

P PSW.0 0D0H Parity flag. Set/cleared by hardware each
instruction cycle to indicate an odd/even number
of "1" bits in the accumulator.

8051 Data Sheet 1

1
Reprinted with permission of Intel Corporation from 8-Bit Embeded Controllers (270645). Santa Clara, CA:

Intel Corporation, 1991.

439

440 | APPENDIX E

8051 DATA SHEET | 441

442 | APPENDIX E

8051 DATA SHEET | 443

444 | APPENDIX E

8051 DATA SHEET | 445

446 | APPENDIX E

8051 DATA SHEET | 447

448 | APPENDIX E

8051 DATA SHEET | 449

450 | APPENDIX E

8051 DATA SHEET | 451

452 | APPENDIX E

8051 DATA SHEET | 453

454 | APPENDIX E

ASCII Code Chart

FIGURE F-1

ASC1I code chart

455

456 | APPENDIX E

MON51—An 8051 Monitor
Program

This appendix contains the listing for an 8051 monitor program (MON51) along with a
general description of its design and operation. Many of the concepts in assembly lan-
guage programming developed earlier in short examples (see Chapter 7) can be reinforced
by reviewing this appendix. The source and listing files for MON51 are contained on the
diskette accompanying this text.

MON51 is a monitor program written for the 8051 microcontroller and, more speci-
fically, for the SBC-51 single-board computer (see Chapter 11). We begin with a
description of the purpose of a monitor program and then give a summary of MON51
commands. The overall operation of MON51 and some design details are also described.
The final pages of this appendix contain listings of each assembled source file, the listing
created by RL51, and a dump of MON51 in Intel hexadecimal format.

A monitor program is not an operating system. It is a small program with commands that
provide a primitive level of system operation and user interaction. The major difference is that
operating systems are found on larger computers with disk drives, while monitor programs are
found on small systems, such as the SBC-51, with a keyboard (or keypad) for input and a CRT
(or LEDs) for output. Some single-board computers also provide mass storage using an audio
cassette interface.

MON51 is an 8051 assembly language program approximately two kilobytes in
length. It was written on an Intel iPDS100 development system using an editor (CREDIT),
a cross assembler (ASM51), and a linker/locator (RL51). Testing and debugging were per-
formed using a hardware emulator (EMV51) connected to an Intel SDK-51TM single-
board computer. It is worth mentioning that hardware emulators are such powerful tools
that the first version of MON51 burned into EPROM was essentially "bug-free."

MON51 was developed using modular programming techniques. Ten source files were
used, including nine program files and one macro definition file. To keep the listing files rel-
atively short for this appendix, the "create symbol table" option was switched off in each

457

458 | APPENDIX G

source file using the $NOSYMBOLS assembler control. (See MAIN.LST, line 4 on p. 466.)
However, since the $DEBUG assembler control was also used, the listing file created by the
linker/locator, RL51, contains a complete, absolute symbol table for the entire program. The
linker/locator absolute output was placed in V12 (for "version 12") and the listing file was
placed in V12.M51. The OH (object-to-hex) utility was used to convert the absolute output
to an Intel hex file, V12.HEX, suitable for printing, downloading to a target system, or
burning into EPROM. (Spaces have been inserted into the hex file to improve readability.)

The files appearing in this appendix are identified below.

File Page

ASM51 Listings

MAIN.LST 466

GETPAR.LST 470

IO.LST 473

CONVRT.LST 478

LOAD.LST 479

DUMP.LST 481

SFR.LST 484

IS.LST 488

SET.LST 489

Macro Definitions

MACROS.SRC 493

RL51 Listing

V12.M51 494

Hex File

V12.HEX 496

COMMANDS AND SPECIFICATIONS

MON51 uses the 8051's on-chip serial port for input/output. It requires an RS232C VDT ope-
rating at 2400 baud with seven data bits, one stop bit, and odd parity. Command line editing is
possible using the BACKSPACE or DELETE keys to back up and correct mistakes. VT100
escape sequences are used (see below).

The following four commands are supported:

DUMP dump the contents of a range of memory locations to
the console

SET examine single memory locations and set their contents to a
new value

GO go to user program at a specified address

LOAD load an Intel hex-formatted file

MON51—AN 8051 MONITOR PROGRAM | 459

COMMAND FORMAT

Commands are entered using the following format:
<c1><c2><p1>,<p2>,<p3>,<p4><CR>

where <c1>and<c2>form a 2-character command

<p1>to<p4>are command parameters

<CR>is the RETURN key

The following general comments describe command entry on MON51:
When the system is powered up or reset, the "V12>" prompt appears on the VDT.

 Commands are entered on the keyboard and followed by pressing the RETURN key.
 During command entry, mistakes may be corrected using the BACKSPACE or

DELETE key.
 Maximum line length is 20 characters.
 CONTROL-C terminates a command at any time and returns control to the prompt.
 An empty command line (RETURN key only) defaults to the SET command.
 Each command uses from 0 to 4 parameters entered in hexadecimal. (Note: The

"H" is not needed.)
 Parameters are separated by commas.
 Any parameter may be omitted by entering two commas.
 Parameters omitted will default to their previous value.
 CONTROL-P toggles an enable bit for printer output. (Note: If printer output is en-

abled, the printer must be connected and on-line; otherwise MON51 waits for the
printer and no output is sent to the console.)

COMMON SYNTAX

Dump

Format: D<m><start>,<end><CR>

Where: D is the command identifier

<m> is the memory space selector as follows:

B—bit-addressable memory

C—code memory

I—internal data memory

R—special function registers

X-extemal data memory

<start> is the start address

<end> is the end address

<CR> is the RETURN key

(Note: Output to the console may be suspended by entering CONTROL-S (XOFF).
CONTROL-Q (XON) resumes output.)

Example: DX8000,8100<CR>dumps the contents of 257 external data locations
from addresses 8000H to 8100H

Set

Format: S<m><address><CR> followed by one of

<value>

<SP>

—

<CR>

Q

Where: S is the command identifier

<m> is the memory space selector as follows:

B—bit-addressable memory

C—code memory

I—internal data memory

R—special function registers

X—external data memory

<addressees the address of a memory location to examine and/or
set to a value

<value> is a data value to write into memory

<SP> is the space bar used to write same value into the next
location—examine previous location

<CR> is the return key used to examine the next location

Q quit and return to the MON51 prompt

Example: SI90<CR>followed by A5<CR>sets Port 1 to A5H

G o

Format: GO<address><CR>
Where: GO is the command identifier

<address> is the address in code memory to begin

execution <CR> is the RETURN key

Example: GO8000<CR> loads 8000H into the program counter

L o

Format: LO<CR>

Where: LO is the command identifier

460 | APPENDIX G

MON51—AN 8051 MONITOR PROGRAM | 461

<CR>is the RETURN key

Example: LO<CR> The message "<host download to SBC-51>" appears.
MON51 receives an Intel hex-formatted file at the serial port and writes
the bytes received into external data memory. When the transfer is
complete, the message "EOF—file download OK" appears. Note: Use
the DUMP command to verify that the transfer was successful.

GENERAL OPERATION OF MON51

The general operation of MON51 is described by the following steps:

1. Initialize registers and memory locations.
2. Send prompt to VDT display.
3. Get a command line from VDT keyboard.
4. Decode command.
5. Execute command
6. Go to step 2.

Although numerous subroutines and program modules participate in the overall opera-
tion of MON51, the basic framework to implement the above steps is found in MAIN.LST.
The instructions to initialize registers and memory locations (step 1) are lines 171 to 200 (see
pp. 467-68). The prompt is sent to the VDT display in lines 201 and 202, and then a command
is inputted from the VDT keyboard in lines 203 and 204 (steps 3 and 4). The command is de-
coded in lines 205 to 224. MON51 is designed to support 26 commands, one for each letter in
the alphabet. Only four are implemented, however, while the others are for future expansion
or custom applications. Decoding the command entails (a) using the first character in the input
line buffer to look up the command's address from the table in lines 227 to 252, (b) placing the
command's address on the stack (1 byte at a time), and (c) popping the address into the pro-
gram counter using the RET instruction (line 225).

The code for the DUMP, SET, and LOAD commands is contained in separate files,
while the code for the GO command is found in MAIN.LST in lines 268 to 274. Numerous
subroutines are used throughout MON51 and can be found in the various listings provided.

During command decoding, the subroutine GETPAR is called (line 224). This sub-
routine gets parameters from the input line (which are stored in the line buffer as ASCII
characters) and converts them to binary, placing the results in internal RAM at four 16-bit
locations starting at the label PARMTR (see GETPAR.LST, line 58 on p. 471). These pa-
rameters are needed by the commands DUMP, SET, and GO.

After each command is executed, control is passed back to MON51 at the label
GETCMD (line 200 in MAIN.LST) and the above steps are repeated. User programs may ter-
minate, using the address of GETCMD (00BCH) as the destination of an LJMP instruction.

MON51 contains numerous comments, and each subroutine and file contains a com-
ment block explaining the general operation of the section of code that follows. Readers
interested in understanding the intricacies of MON51 operation are directed to the listing
files and comment lines for further details. In the following section, the overall design of
MON51 is discussed.

462 | APPENDIX G

THE DESIGN OF MON51

Developing an understanding of the "design" (as opposed to the operation) is also important,
since MON51 incorporates—on a relatively large scale—many of the concepts developed ear-
lier in brief examples. The following paragraphs elaborate on key design features that can be
adopted in developing software for 8051-based designs. In a sense, then, the present appendix
is like a case study—describing the design details of an existing 8051 software product.

Assembler controls, as mentioned in Chapter 7, are used primarily to control the for-
mat and content of the listing files created by ASM51 and RL51. At the top of each of the
nine program listings, several assembler controls appear. These were chosen primarily to
produce listing files suitable for reproduction in this appendix. Note in MAIN.LST, for ex-
ample, that the control $NOLIST is used in line 6. This was used because line 7 (not
listed) contained the control $INCLUDE(MACROS.SRC), which directed ASM51 to the
file containing the macro definitions (pp. 493-94). Turning the "list" option off and on just
before and after the $INCLUDE statement prevented ASM51 from needlessly putting the
macro definitions into MAIN.LST.

Many of the assembler directives supported by ASM51 appear throughout the
MON51 listing files. Recall (Section 7.5 Assembler Directives) that ASM51 supports five
categories of directives:

 Assembler state control
 Symbol definition
 Storage initialization/reservation
 Program linkage
 Segment selection

Examples from each of these categories appear in the listings.

Assembler State Control. The only assembler state control directives used in MON51 are
END and USING. The ORG directive was never used, since the code and data segments
were designed to be relocatable with addresses established only at link-time.1 An instance
of USING can be found in GETPAR.LST, line 108 on p. 472.

Symbol Definitions. Many symbols are defined throughout MON51, as, for example, in
MAIN.LST, lines 115 to 127 (pp. 466-67). Note in particular the definitions for EPROM,
ONCHIP, and BITRAM. EPROM is defined as the name for a code segment. Similarly,
ONCHEP is defined as the data segment and BITRAM is defined as the bit segment. All three
are, by definition, relocatable. Recall that the segment type "DATA" corresponds to the 8051
on-chip data space accessible by direct addressing (00H to 7FH). All instructions in MON51
go in the EPROM code segment, all on-chip data locations are defined in the ONCHIP data
segment, and all bit locations are defined in the BITRAM segment.

Storage Initialization/Reservation. The define byte directive (DB) is used throughout
MON51 to initialize code memory with byte constants. Usually, the definition is for ASCII
character strings sent to the console as part of MON51 's normal operation. For example,
the prompt characters for MON51 are defined in MAIN.LST on lines 288 and 289.

1
The only exception to this is the absolute definition of the stack using the DSEG directive (see p. 469, line 288).

MON51—AN 8051 MONITOR PROGRAM | 463

Other definitions include the escape sequence sent to the console to back up the cursor.
MON51 is designed to work with VT100 compatible terminals. If the BACKSPACE or
DELETE key is pressed while you are entering a line, the escape sequence <ESC>0 [(or hexa-
decimal bytes 1BH, 5BH, and 44H)] must be sent to the terminal. These bytes are defined as a
null-terminated ASCII string (see IO.LST, line 144 on p. 475) using the DB directive. Once
the code for the BACKSPACE or DELETE key is detected (see lines 17 and 18 on p. 473 and
lines 133 and 135 on p. 475), the pointer to the input line buffer is decremented twice, and the
"back-up cursor" escape sequence is sent to the console, using the output string (OUT-SIR)
subroutine. (See lines 136 to 139 on p. 475.)

Storage locations are reserved using either the define storage (DS) or define bit
(DBIT) directives. The first instance of a DS directive defines a 24-byte stack (see line
288 in MAIN.LST) in an absolute data segment starting at address 08H in internal RAM.
MON51 does not use register banks 1 to 3, so internal RAM addresses 08H to 1FH have
been reserved for the stack. The default value of 07H for the stack pointer ensures that the
first write to the stack is at address 08H. A 20-byte buffer for the command line is
reserved at line 296 in MAIN.LST. Several bit locations are reserved in the BITRAM bit
segment at the end of MAIN.LST.

Program Linkage. The PUBLIC and EXTRN directives are used near the beginning of
most source files. PUBLIC declares which symbols defined in a particular file are to be
made available for use in other source files. EXTRN declares which symbols are used in the
current source file but are defined in another source file. The NAME directive is not used in
MON51; therefore, each file is a module with the file name serving as the module name.

Several of the files for MON51 hold the source code for subroutines used elsewhere.
For example, IO.LST (pp. 473-78) contains the source code for the input/output subrou-
tines INCHAR, OUTCHR, INLINE, OUTSTR, OUTHEX, and OUT2HX. These subrou-
tines are all declared as "public" in line 26 (p. 473). Other files that use these subroutines
must contain a statement declaring these symbols as external code address symbols (e.g.,
MAIN,LST, line 108 on p. 466). Where these subroutines are called, the address for the
LCALL or ACALL instruction is unknown by ASM51, so "F" appears in the listing file to
indicate that linking/locating is required to "fix" the instruction. For example, in
MAIN,LST the prompt is sent to the console in line 202, using ACALL OUTSTR. This
instruction appears in the listing as 1100H with an "F' beside it. The linker/locator, RL51,
will determine the correct absolute address of the OUTSTR subroutines and fix the
instruction. In this example, since the addressing mode is absolute within the current 2K
page, the fix substitutes 11 bits into the instruction—three bits in the upper byte and all
eight bits in the lower byte.

Segment Selection. The segment selection directives are RSEG to select a relocatable
segment, and the five directives to select an absolute segment of a specified memory space
(DSEG, BSEG, XSEG, CSEG, and ISEG). The RSEG is used at least once in each file to
begin the EPROM code segment (e.g., MAIN,LST, line 129, p. 467). Other instances of
RSEG appear as necessary to select the ONCHIP data segment (e.g., MAIN,LST, line
295) or the BITRAM bit segment (e.g., MAIN,LST, line 306, p. 470). The only instance
of an absolute segment is the definition of the stack at absolute internal RAM address 08H
(MAIN,LST, line 287, p. 469).

464 | APPENDIX G

OPTION JUMPERS

The SBC-51 has three jumpers on Port 1 that are read by software to evoke special features.
MON51 reads these jumpers after a system reset and sets or clears corresponding bit locations
(see MAIN.LST lines 171 to 176). Each jumper has a special purpose as outlined below.

Jumper Installed Purpose
X3 NO normal execution

YES jump to 2000H upon reset

X4 NO interrupt jump table at 80xxH

YES interrupt jump table at 20xxH

X13 NO normal execution

YES software UART (see below)

Caution should be exercised when you are interfacing I/O circuitry to Port 1. If the attached
interface presents a logic 0 to the corresponding pin during a system reset, this is interpreted
by MON51 as if the jumper were installed, and the option listed above takes effect.

Reset Entry Point. Jumper X3 can be installed to force a jump to 2000H immediately after
a system reset (see MAIN.LST, line 199). This is useful in order to have both the MON51
EPROM and a user EPROM installed simultaneously and to select which executes upon re-
set. If, for example, the user program does not use a VDT, then it is inconvenient to power
up in "MON51 mode" just to enter GO2000H to evoke the user program. The installation
of jumper X3 avoids the need for this.

Interrupt Jump Tables. Although MON51 does not use interrupts, user applications that co-
exist with MON51 can adopt an interrupt-driven design. Since MON51 resides in EPROM
starting at address 0000H and since all interrupts vector to locations near the bottom of memory,
a jump table was devised to allow user applications executing at other addresses to employ
interrupts. Based on the default hardware configuration of the SBC-51, user applications gen-
erally execute either in RAM starting at 8000H or in EPROM starting at 2000H. If a user ap-
plication enables interrupts and subsequently an interrupt occurs and is accepted, the interrupt
vector address (i.e., entry point) is one of 0003H, 000BH, and 0013H, etc., depending on the
source of the interrupt (see Table 6-4). At each interrupt vector address in MON51, there is a
short instruction sequence that jumps to a location either in the user EPROM at 20xxH or in
RAM at 80xxH, depending on whether or not jumper X4 is installed on the SBC-51 (see
MAIN.LST, lines 150 to 183). The correct entry point for each interrupt is listed below.

INTERRUPT ENTRY POINT

Interrupt Source X4 Installed X4 Not Installed

(default entry point) 2000H 8000H
External 0 2003H 8003H
Timer 0 2006H 8006H
External 1 2009H 8009H
Timer 1 200CH 800CH
Serial Port 200FH 800FH
Timer 2 2012H 8012H

MON51—AN 8051 MONITOR PROGRAM | 465

The entry points above are spaced three locations apart, leaving just enough room for an
LJMP instruction to the interrupt service routine. If operation is from a 12 MHz crystal, 6
µs is added to the interrupt latency because of the overhead of this scheme (due to the JNB
and LJMP instructions in MON51 and the LJMP instruction in the user program). Of
course, if user applications do not use interrupts, programs may begin at 2000H or 8000H
and proceed through the above entry points.

For an example of a user application using interrupts that coexists with MON51, see
the MC14499 interface project in Chapter 11.

Software UART. When jumper X13 is installed, MON51 implements a software UART
for serial input/output instead of using the 8051's on-chip serial port. This feature is useful
for developing interfaces to serial devices other than the default terminal. Note that the
baud rate is 1200 if the software UART is used. The operation of the software UART is
described in IO.LST (p. 477, 11.219-278).

THE LINK MAP AND SYMBOL TABLE

One of the most important listings is that produced by the linker/locator, RL51. This list-
ing, V12.M51 (pp. 494-96), contains a link map and symbol table. The link map shows the
starting address and length of the three relocatable segments used by MON51 (p. 495).
The addresses are absolute at this stage, since the segments have been located by RL51
based on the specifications provided in the invocation line (p. 494). The symbol table
gives the absolute values assigned to all relocatable symbols (as assigned by RL51 at link-
time). It is partitioned alphabetically by module (i.e., file) in the order linked.

As an example, the absolute address of the OUTSTR subroutine is determined by
looking up OUTSTR in the IO module (p. 495-96). The address of OUTSTR in MON51
version 12 is 0282H.

INTEL HEX FILE

The final listing is that produced by the OH (object-to-hex) conversion utility. The listing
V12.HEX (pp. 496-98) contains the machine-language bytes of the MON51 program in
Intel hexadecimal format. For example, the OUTSTR subroutine starts at address 0282H.
On p. 497, the first three bytes of this subroutine appear as E4H, 93H, and 60H. Referring
directly to the OUTSTR subroutine in the IO.LST confirms that these values are correct
(see p. 476, 11.156-158).

MAIN MODULE FOR 8051 MONITOR PROGRAM

466

467

468

469

470

471

472

473

474

475

476

477

CONVERSION SUBROUTINES

478

479

480

481

482

483

READ AND WRITE SFRs

484

485

486

487

"IS" ROUTINES

488

489

490

491

492

493

V12.M51

494

495

V12.HEX

496

497

498 | APPENDIX G

A Guide to Keil's
µVISION2 IDE

INTRODUCTION

Keil's µVision2 Integrated Development Environment (IDE)
1

is software that allows the
8051 C programmer to edit, compile, run, and debug 8051 C programs. This appendix
presents a brief guide to using the µVision2 IDE.

THE µVISION2 WORKSPACE

When you double-click the µVision2 IDE, you will see a screen similar to the one shown
in Figure H-1. The main windows that appear are the Workspace, the Edit window, and the
Output window.

The Workspace is a pane with three tabs that open different windows—Files, Regs,
and Books. The Files window (see Figure H-2) allows you to manage the source code files
that you want to include in your current project. Right-click the Simulator option and then
choose "Select Device for Target 'Simulators" to indicate the target 8051 or derivative
device for which you want to write a C program. To add a file to your project, simply
right-click the "Source Group 1" option and browse for the desired C file.

If you prefer to create a new program, then select New from the File menu and start key-
ing the code for your program. When you have finished, save it as a C file and add it to your
project. In Figure H-2, you can see that the sole file included in the project is test.c. Double-click
a file name to open it and it will display in the Edit window, as shown in Figure H-1.

COMPILING AND DEBUGGING

When you have finished editing your program, the next thing you want to do is compile it to
see if there are any compile errors. For this, you could select "Build target" from the Project

1
An evaluation version is available for download at http://www.keil.com/demo/.

499

http://www.keil.com/demo/

FIGURE H-1

µVision2 IDE

500
FIGURE H-2
The Files window

A GUIDE TO KEIL'S µVISION2 IDE | 501

FIGURE H-3

Select "Build target" from the Project menu

menu (see Figure H-3). This will compile all recently updated files in your project. Alterna-
tively, you could select "Translate ... " to compile only the C file you have currently high-
lighted, or "Rebuild all target files" to compile all files in your project, regardless of whether
or not you have just updated them. The Output tab should display 0 errors.

Before downloading the compiled program into the ROM of your 8051, it is advis-
able to test and debug it to determine if it executes as desired. Select "Start/Stop Debug
Session" from the Debug menu (see Figure H-4). If you want to run the program from
beginning to the end, select "Go" from the Debug menu. Otherwise, if you would like to
execute one C statement at a time, select the "Step" option.

In the debugging session, as you are stepping through or running your program, you
can choose to view the status of registers by clicking on the Regs tab to open the Regs
window (see Figure H-5).

FIGURE H-4

Select "Start/Stop Debug Session" from the Debug menu

502|APPENDIXH

Figure H-5 shows the Regs wind
highlighted. You can also view the mem
from the View menu. The Memory win
lower-right corner of the screen. Figure
cations starting from 0103H. If you wo
memory, then click in the text box to th
refers to internal data memory and 0000
Keying C instead of D enables you to v
location, simply double-click the locat
Figure H-7) and key the new value into
ues in decimal or in hex, using standard

Viewing the contents and status of
them from the Peripherals menu. As an e
tents of Port 0.

FIGURE H-6

Memory window
FIGURE H-5
ow with the stack pointer (SP) and its contents
ory contents by selecting "Memory Window"

dow (see Figure H-6) normally appears at the
H-6 shows the contents of external memory lo-
uld rather look at the contents of internal data
e right of "Address:" and key D:0000, where D
specify the starting location you want to view.

iew code memory. To modify a certain memory
ion and choose "Modify Memory at ... " (see
the edit box that appears. You can enter the val-
C notation.
the on-chip peripherals is also easy by selecting
xample, Figure H-8 shows how to view the con-

Regs window

A GUIDE TO KEIL'S µVISION2 IDE | 503

FIGURE H-8

Viewing the contents and status of a peripheral

Recall that in the first "Hello World" C program in Chapter 8, mention was made that

in µVision2 IDE, the device connected to the 8051's serial port is a simulated serial window

by default. By using this serial window, you can view whatever messages that you send

with the print f statement to the serial port. To access this serial window, select "Serial

Window #1" from the View menu during the debugging session. Figure H-9 shows the se-

rial window when the "Hello World" program in Chapter 8 is run.

FIGURE H-7

Modifying a memory location

FIGURE H-9
Serial window

5
04 | APPENDIX H

In the section on timers in Chapter 8, you learned that you could direct the µVision2's
C compiler to disassemble your C programs into assembly language. To view the correspon-
ding assembly language version of your program, select "Disassembly Window" from the
View menu. Figure H-10 shows the disassembly of our "Hello World" program, with the
original C statements shown right above their corresponding assembly language instructions.

FIGURE H-10
Disassembly window

FIGURE H-11
Options for the target

A GUIDE TO KEIL'S µVISION2 IDE | 505

FIGURE H-12

Output options tab

Once you are satisfied with the debugging and simulation of your program, you can
direct the µVision2 to generate the machine code as a HEX file. Right-click the Simulator
option in the Files window, and then select "Options for Target ... " (see Figure H-11).
Click the Output tab and check the "Create HEX File" option (see Figure H-12).

With this option selected, the next time you build the target, a HEX file would be
created in the same directory as your C file. You can then download this HEX file into
ROM, and the 8051 will be ready to execute the program the moment you switch it on.

A Guide to the 8052
Simulator

INTRODUCTION

The 8052 Simulator for Windows is software that simulates the entire operation of the
8051 or 8052 microcontroller, plus all its registers, internal RAM locations, I/O ports,
timers, serial ports, and interrupts. During the initial stages of developing an 8051—or
8052—based system, you can test the assembled or compiled program entirely in
software with the help of this simulator, without having to worry about the actual
hardware. This appendix provides a brief guide to using the 8052 Simulator.

The 8052 Simulator

The main window of the 8052 Simulator is as shown in Figure I-1. The first thing you need
to do is to load an already assembled or compiled program that has been saved in Intel HEX
format. Most 8051 assemblers and compilers have an option to save the assembled or com-
piled output in this format. Figure 1-2 shows how this is done by selecting the "Open Intel-
Standard File" from the File menu and then browsing for the Intel HEX file.

The loaded program is now ready to be tested. First, you can choose to view various
components of the 8051, such as the internal RAM, I/O ports, special function registers
(SFRs), and timers. Select each of these from the View menu, as shown in Figure 1-3.

Figure 1-4 shows the Internal Memory (RAM) window that was selected from the
View menu. All the rows of the first column represent the addresses of 16 memory locations,
the contents of which are displayed in the 16 columns on the right. For example, the first row
consists of the internal memory locations 00H to 0FH, and as can be seen in Figure 1-4, the
content of each is 0. To modify any location, click it and then key the new value in hexa-
decimal form. Alternatively, you can choose to check (set) or leave unchecked (clear) any of
the 8 bits in that location.

'By Vault Information Services, 8174 S. Holly PMB 272, Littleton, CO 80122, U.S.A.
E-mail: sim8052@vaultbbs.com.

507

mailto:sim8052@vaultbbs.com.

F

8

5

IGURE I-1

052 Simulator

FIGURE 1-2

Opening an Intel HEX file

08

F

V

IGURE 1-4

iewing internal RAM

FIGURE 1-3

Viewing internal components of the

8051

509

5
10|APPENDIXI

You can choose to view the contents of up to 64K of external RAM from the same
View menu. Selecting "I/O Ports" from the View menu displays the Ports window (see
Figure 1-5), which is straightforward enough. The contents of all four I/O ports are shown
in the figure. You can modify their contents using a process similar to that used to modify
internal or external RAM.

Figure 1-6 shows the SFRs window, which displays the contents of all the SFRs in
the 8051's upper 128 internal RAM locations. Again, their contents can be modified by

FIGURE 1-6

Viewing SFRs

FIGURE 1-5

Viewing I/O ports

F

V

A GUIDE TO THE 8052 SIMULATOR | 511

clicking on the white boxes and then keying the new value in hex. Notice also that at the
bottom of the SFRs window is the "Current Instruction" section. The box at left in this
area shows the location in code memory of the next instruction to be executed while the
right box shows that next instruction.

Also available for viewing is the Timers window (see Figure I-7), which shows the
contents of the TCON and TMOD registers as well as the timer count values of Timers 0,
1, and 2 (for the 8052).

The serial port is also simulated by a terminal window (see Figure I-8) that displays
whatever characters are sent to the serial port. The full version of the 8052 Simulator also

IGURE 1-8

iewing the terminal window

FIGURE 1-7

Viewing timers

512 | APPENDIX I

supports connection of the 8051's serial port to the computer's COMM/serial port, so that
any data sent to or received from the 8051 serial port would be sent to or received from
the computer's COMM/serial port.

Let's assume that the HEX file corresponding to the assembly language program in
Figure 11-33 has been loaded. This is the program for the pedestrian traffic light system.
To test execute the program, first display the relevant windows using the View menu. For
example, you could display the internal RAM, I/O ports, and SFRs windows. Next, you
could choose to run the entire program right by choosing the "Execute Program" from the
Run menu. You can stop the program execution at any time by selecting "Stop" from the
same menu. Alternatively, you could execute each instruction one by one by choosing
"Single Step" from the Debug menu, or use F8, the shortcut key for the option that will
allow you to run each step separately.

For example, the first instruction in the traffic light program is to jump to MAIN.
Press F8 once to execute this instruction, and then press F8 again to execute the next in-
struction, which is to move the value 81H into the IE register (see Figure 1-9). You will
see that the content displayed in the IE register's is now 81H. In a similar way, you can
step through the rest of the program one step at a time, checking the suitable SFR, internal
RAM locations, I/O ports, or timers to see if they are changed as expected. To reset the
program to the beginning, simply choose "Reset Program" from the Run menu.

At any time during the program execution or as you execute it one step at a time, you
can select "Program Analysis" from the View menu to display useful information such as
the number of instructions so far executed and how many machine cycles have been used.

FIGURE 1-9
Checking the program one step at a time

A GUIDE TO THE 8052 SIMULATOR | 513

There is also an Execution History area in the Program Analysis window that lists all pre-
viously executed instructions (see Figure I-10.)

An added feature in the 8052 Simulator is the 4 x 5 keypad simulator (see Figure I-11).
This simulates the functions of a 4 x 5 keypad, similar to the 4 x 4 hexadecimal keypad dis-
cussed in Chapter 11. You can customize the names of any key simply by right-clicking the
key you want to change and then keying the new name.

FIGURE 1-10
The Program Analysis window

FIGURE I-11
The keypad simulator

514 | APPENDIX I

You can also customize which port pins will be used to connect the rows and
columns by selecting "Keypad Configuration" from the Configuration menu. This is
shown in Figure 1-12.

FIGURE 1-12

The Keypad Configuration window

The Advanced Encryption
Standard

INTRODUCTION

As the 8051 is used more and more in smart cards, where the security of information is almost
always important, it is most often used to execute software or hardware implementations of
encryption methods. The current standard for encryption is the Advanced Encryption Standard
(AES), a recent and secure method that was officially adopted in 2000 by the U.S. National
Institute of Standards & Technology (NIST) for encrypting confidential, nonclassified
information in the United States. It is expected that the AES will replace the Data Encryption
Standard in ATM cards, smart cards, online transactions, and other security-related
applications. Therefore, the study of the 8051 would not be complete without a discussion of
the AES. This appendix is intended to acquaint the reader on how the AES works so that you
will understand how the AES can be implemented with the 8051.

BLOCK ENCRYPTION

These days, messages and information are digitally stored in files in the computer in terms of
bits of 1 s and 0s. These messages vary in size from a few bytes to a few hundred
megabytes. For that reason, current encryption methods specify a standard input block size,
typically 128 bits. A message that is to be encrypted first must be broken down into blocks
of 128 bits, and then each block is encrypted. The encrypted blocks are then concatenated to
form the encrypted message. See Figure J-1 for an illustration of this process.

HOW THE AES WORKS

For the purpose of describing the AES, its designers represented the 128-bit input block as
a 4 x 4 array of bytes. An element of this array is denoted by a1, where i and j are the row
and column indices respectively, numbered from 0 to 3, as shown in Figure J-2.

5 1 5

516 | APPEND
J

p
d
D

k
o

e
a
o

t
S

E
t
r
t

IX

In order to use the AES for encrypting the 128-bit block, the user is prompted for a
assword, called the secret key. This key could be either 128, 192, or 256 bits. For ease of
escription in this example, we will henceforth concentrate on AES with a 128-bit key.
etails of using the AES with the other two key versions are similar.

This 128-bit secret key is put through a series of operations, collectively called the
ey schedule. The purpose is to use the secret key to generate a total of 11 different keys
f also 128 bits in size, each of which is called a round key.

Now let's look at how the AES encryption works. Before we start, remember that
ven though there are numerous specific names involved, the AES is designed to be suit-
ble for implementation on 8-bit processors and microcontrollers such as the 8051, so its
perations are simple and straightforward.

The AES encryption basically involves iterating an operation, called a round, for a
otal of 10 times. Within each round operation are the following 4 smaller operations:
ubBytes, ShiftRows, MixColumns and AddRoundKey.

The SubBytes operation is based on a table, called the substitution box or s-box.
ach byte, of the 4 x 4 array previously shown in Figure J-2 is replaced with an en-

irely different byte, b1. How is this b1 obtained? The original a1 is used as an index to
efer to a corresponding element in the s-box table. That element is b1. Figure J-3 shows

he SubBytes operation.

FIGURE J-1
Encrypting a message one block at a

time

FIGURE J-2
Representing a 128-bit block of the AES

THE ADVANCED ENCRYPTION STANDARD | 517

FIGURE J-3
The SubBytes operation

The ShiftRows operation is even simpler. In the 4 x 4 array, the first row is left un-
changed. The second row is rotated left by one byte (8 bits), the third row is rotated left by
2 bytes, and the fourth row is rotated left by 3 bytes (see Figure J-4).

The MixColumns operation is a bit more involved, and we won't go into the tech-
nical details here. The interested reader is referred to the AES documentation in the Bib-
liography for more details. Simply explained, this operation replaces each column with an
entirely different column based on a series of operations that can be efficiently imple-
mented on the 8051. Figure J-5 illustrates the MixColumns operation, where the shaded
column shows that the first column at the input is replaced with a new column appearing
also in the first column at the output.

The AddRoundKey operation takes all 128 bits of the 4 x 4 array and exclusiveORs
them with a 128-bit round key that was generated from the secret key, as previously
mentioned.

We have described all the operations within the AES. To summarize, the AES encryp-
tion takes a 128-bit input block, and puts it through 10 rounds of operations, each of which
consists of the SubBytes, ShiftRows, MixColumns, and AddRoundKey operations applied in

FIGURE J-4
The ShiftRows operation

518 | APPENDIX J

FIGURE J-5

The MixColumns operation

sequence. However, an extra AddRoundKey operation is added prior to the first round,
and the MixColumns operation is omitted from the last round. These slight adjustments
are design choices to make encryption and decryption similar in structure. This similarity
is desired because it allows for more compact hardware and software implementations. An
illustration of the entire AES encryption process is shown in Figure J-6.

FIGURE J-6
The AES encryption

519

Sources of 8051
Development Products

Allen Systems, 2151 Fairfax Road, Columbus, OH 43221

Product: FX-31 8052-BASIC SBC

Description: 8052 single-board computer with built-in BASIC interpreter

Product: CA-51

Description: 8051 cross assembler

Host Computer: IBM PC and compatibles

Product: DP-31/535

Description: Single-board computer based on Siemens 80535 CPU

Applied Microsystems Corp., 5020 148th Ave. N. E., P.O. Box

97002, Redmond, WA 98073-9702

Product: EC7000

Description: 8051 microcontroller emulator

Host Computer: IBM PC and compatibles

Aprotek, 1071-A Avenida Acaso, Camarillo, CA 93010

Product: PA8751

Description: 8751 programming adapter

Features: Adapts 8751 EPROM microcontrollers to any EPROM
programmer as a 2732

521

522 | APPENDIX K

Avoset Systems, Inc., 804 South State St.,

Dover, DE 19901

Product: XASM51

Description: 8051 cross assembler

Host Computer: IBM PC and compatibles

Product: AVSIM51

Description: 8051 family simulator

Host Computer: IBM PC and compatibles

Binary Technology, Inc., B.O. Box 67, Meridan,

NH 03770

Product: SIBEC-Il

Description: 8052 single-board computer with built-in BASIC
interpreter

Cybernetic Micro Systems, Inc., P.O. Box 3000,

San Gregorio, CA 94074

Product: CYS8051

Description: 8051 cross assembler

Host Computer: IBM PC and compatibles

Features: Does not generate relocatable modules

Product: SIM8051

Description: 8051 simulator

Host Computer: IBM PC and compatibles

Product: CYS8051

Description: EPROM programmer for 8751

Interface: RS232 serial

Decmation, Inc., 3375 Scott Blvd., Suite #236,

Santa Clara, CA 95054

Product: ASM51, PLM51 SIM51, etc.

Description: 8051 development software

Host Computer: VAX, PDP-11, IBM PC and compatibles

SOURCES OF 8051 DEVELOPMENT PRODUCTS | 523

HiTech Equipment Corp., 9560 Black Mountain Road,

San Diego, CA 92126

Product: 8051 SIM

Description: 8051 simulator

Host Computer: IBM PC/XT or Z80 CP/M microcomputers

Huntsville Microsystems, Inc., P.O. Box 12415, 4040

South Memorial Parkway, Huntsville, AL 35802

Product: SBE-31, HMI-200-8051

Description: 8051 emulator

Interface: Serial

Host Computer: Various computers with CP/M or MS-DOS operating system

Keil Software, Inc., 1501 10" Street, Suite 110,

Plano, TX 75074

Product: µVision2 IDE

Description: 8051 C compiler and debugger

Host Computer: IBM PC and compatibles

Logical Systems Corp., 6184 Beall Station, Syracuse,

NY 13217

Product: UPA8751

Description: 8751 programming adaptor

Features: Adapts 8751 to 2732 socket for installation into any EPROM
programmer

Product: SIM51

Description: 8051 simulator and debugger

Host Computer: IBM PC (MS-DOS, CP/M) and compatibles

Micromint, Inc., 4 Park Street, Vernon, CT 06066

Product: BCC52

Description: 8052 single-board computer with built-in interpreter

524 | APPENDIX K

Nohau Corp., 51 East Campbell Ave., Suite 107E, Campbell,

CA 95008

Product: EMV51-PC

Description: 8051 emulator

Host Computer: IBM PC and compatibles

Relational Memory Systems, Inc., P.O. Box 6719, San Jose,

CA 95150

Product: ASM51 RLINK, RLOC, GLIB, OBJCON

Description: 8051 software development tools

Host Computer: IBM PC and compatibles

Scientific Engineering Laboratories, Inc., 104 Charles Street,

Suite 143, Boston, MA 02114

Product: XPAS51

Description: 8051 PASCAL cross compiler

Host Computer: IBM PC and compatibles

Single Board Systems, B.O. Box 3788, Salem, OR 97306

Product: SBS-52

Description: 8052 single-board computer with built-in BASIC interpreter

Software Development Systems, Inc., 3110 Woodstock Drive,

Downers Grove, IL 60515

Product: A51

Description: 8051 cross assembler

Host Computer: Various systems running MS-DOS, Xenix, or Unix

Universal Cross Assemblers, P.O. Box 384, Bedford,

Nova Scotia B4A 2X3, Canada

Product: CROSS-16

Description: 8051 cross assembler

Host Computer: IBM PC and compatibles

SOURCES OF 8051 DEVELOPMENT PRODUCTS | 525

URDA, Inc., 1811 Jancey St., Suite #200, Pittsburgh, PA 15206

Product: SBC-51

Description: PC board version of SBC-51 described in this text

Z-World, 2065 Martin Ave. #110, Santa Clara, CA 95050

Product: IBM PC co-processor

Description: Co-processor plugs into PC or PC/AT; runs Intel's ISIS operating
system and software development tools

IC MANUFACTURERS

The following companies are manufacturers and/or developers of the 8051 and derivative ICs.
Intel Corp., 3065 Bowers Avenue, Santa Clara, CA 95051
Siemens Components, Inc., 2191 Laurelwood Road, Santa Clara, CA 95054
Signetics/Philips, 811 East Argues Ave., Sunnyvale, CA 94088-3409
Advanced Micro Devices, Inc., 901 Thompson Place, P.O. Box 3453, Sunnyvale,

CA 94088-3453
Fujitsu Microelectronics, Inc., 3320 Scott Blvd., Santa Clara, CA 95054-3197

526 | BIBLIOGRAPHY

ARTICLES

Ball, S. Embedded debugging tricks. Circuit Cellar (1995, September): 20-23.
Boyet, H., and R. Katz. The 8051 one-chip microcomputer. Byte (1981, December):

288-311.
Cantrell, T. Audio processor chips for the masses. Circuit Cellar (1995, November):

70-76.
Cantrell, T. Chip on patrol. Circuit Cellar (1995, June): 64-71.
Cantrell, T. Plan '251 for outer space!: Intel's 8xC251SB. Circuit Cellar (1995, March):

72-77.
Cantrell, T. UFO alert. Circuit Cellar (1995, January): 100-107.
Cheung, H. DRAM on an 8031: It's not as hard as you'd think. Circuit Cellar (1994,

September): 24-31.
Ciarcia, S. Build the BASIC-52 computer/controller. Byte (1985, August): 105-117.
Ciarcia, S. Build a gray-scale video digitizer—Part 1: Display/receiver. Byte (1987,

May): 95-106.
Ciarcia, S. Build a gray-scale video digitizer—Part 2: Byte (1987, June): 129-138.
Ciarcia, S. Build an intelligent serial EPROM programmer. Byte (1986, October):

103-119.
Ciarcia, S. Build a trainable infrared master controller. Byte (1987, March): 113-123.
Ciarcia, S. Why microcontrollers?—Part 1. Byte (1988, August): 239-245.
Ciarcia, S. Why microcontrollers?—Part 2. Byte (1988, September): 303-323.
Collier, M., and F. Gweme. Preventing the ultimate blow: A portable checking unit for

8751s. Circuit Cellar (1994, September): 48-43.
Dinwiddle, G. An 8031 in-circuit emulator. Byte (1986, July): 181-194.
Dybowski, J. Atmel's AT29C2051 flash-based microcontroller. Circuit Cellar (1995,

February): 76-80.
Dybowski, J. Beef up the 8052 with the DS87C520. Circuit Cellar, no. 52 (1994,

November): 76-82.
Dybowski, J. Embedded development. Circuit Cellar (1995, March): 78-84.
Messick, P., and J. Battle. Build a MIDI input for your Casio SK-1 Keyboard (1987,

August): 34-40.
Natarajan, K. S., and C. Eswarn Design of a CCITT V.22 modem. Microprocessors and

Microsystems 12(9) (1988, November): 532-535.

527

528 | BIBLIOGRAPHY

National Institute of Standards and Technology (NIST). Advanced Encryption Standard,
Federal Information Processing Standard (FIPS) 197. (2002). Online:
http://csrc.nist.gov/encryption/aes.

Schenker, J. Controller chip cuts keyboard redesign to weeks. Electronics 61(2) (1988,
January 21): 42E-42F.

Vaidya, D. M. Microsystem design with the 8052-BASIC microcontroller.
Microprocessors and Microsystems 9(8) (1985, October): 405-411.

Vaidya, D. M. Software development for the 8052-BASIC microcontroller.

Microprocessors and Microsystems 9(10) (1985, December): 481-485.
Wallace, H. No emulator? Try a one-wire debugger. Circuit Cellar (1995, January):

20-23.

Warner, W. Use a single-chip microprocessor as the heart of your position
controller EDN (1988, Sept. 1) 161-168.

Yeskey, D. In-circuit 8051 emulator is a tool for the masses. Electronic Design (1988,
January 7): 202.

BOOKS

8-bit Embedded Controllers (270645). Santa Clara, CA: Intel, 1991.
Ayala, K. J. The 8051 Microcontroller: Architecture, Programming, and Applications.

New York: West, 1991.

Barnett, R. H. The 8051 Family of Microcontrollers. New Jersey: Prentice Hall, 1995.
Boyet, H., and R. Katz. The 8051: Programming Interfacing Applications. New York:

MTI Publications, 1981.

Cx51 Compiler: Optimizing C Compiler and Library Reference for Classic and Extended
8051 Microcontrollers. Keil Software, 2001.

Getting Started with µVision2 and the C51 Microcontroller Development Tools. Keil
Software, 2001.

Mazidi, M. A., and J. G. Mazidi. The 8051 Microcontroller and Embedded Systems.
New Jersey: Prentice Hall, 2000.

MCS-51 Macro Assembler User's Guide (9800937-03). Santa Clara, CA: Intel, 1983.
Schultz, T. C and the 8051: Hardware, Modular Programming, and Multitasking.

New Jersey: Prentice Hall, 1998.
Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C.

New York: John Wiley & Sons, 1996.
Stallings, W. Cryptography and Network Security: Principles and Practice. New Jersey:

Prentice Hall, 1999.
Stewart, J. W., and K. X. Miao. The 8051 Microcontroller: Hardware, Software and

Interfacing. New Jersey: Prentice Hall, 1999.
Yeralan, S., and A. Ahluwalia. Programming and Interfacing the 8051 Microcontroller.

Massachusetts: Prentice Hall, 1995.

http://csrc.nist.gov/encryption/aes.

1 kHz square wave, example, 99,
206-207

3-wire communication, 303
4-step stepper motor, 311
7-segment LED display, interface to,

267-273,323-325
8-bit auto-reload mode, 92
8-bit shift register, 113-115
8-bit UART, with variable baud rate,

115-117
8-step stepper motor, 311
9-bit UART, 117
10kHz square wave, example, 98-99,

206-207
13-bit timer mode, 91
16-bit timer mode, 92,94
74HC165, 286
75HC165, 287-288
80C31BH 22
8031

external access (EA), 21
summary of memory space, 24-25

8032,19
enhancements, 41-43
external access (EA), 21

8051
block diagram of, 19
configuration of, 260-263
driving, from TTL oscillator, 22-23
external access (EA), 21
features of, 17-22
illus., 2
NAND operation using, 13-15
pinouts, 18-22
sources for development products,

521-525
summary of on-chip data memory, 24,

26-27
See also MCS-51

8051 C language

advantages and disadvantages of,
191-192

as alternative to assembly language
programming, 191

arrays, 198-199
compilers, 192-193
data types, 193-196
examples of, 204-214
functions, 202-204
memory types and models, 197-198
pointers, 199-202
structures, 199

8051 C programming style, 243-245
8051 data sheet, 439-453
8051 derivatives

high-speed microcontrollers, 378-379
introduction, 377
MCS-l51 and MCS-251, 377
microcontrollers with ADCs and

DACs, 378
microcontrollers with flash memory

and NVRAM, 377-378
network microcontrollers, 379
secure microcontrollers, 379

8051 monitor program (MON51), 259,
457-498

command format, 459
commands and specifications, 458
common syntax, 459-461
conversion subroutines, 478-479
design on, 462-463
dump memory to console, 481-484
general operation of, 461
get parameters from input line,

470-473
Go, 460
input/output routines, 473-478
Intel HEX file, 465
"IS" routines, 488-489
link map and symbol table, 465

Lo, 460-461
load Intel HEX file, 479-481
macro.src, 493-494
main module for, 466-470
option jumpers, 464-465
overview, 457-458
read and write special register

functions (SFRs), 484-487
Set, 460
set memory to value, 489-493
V12.HEX 496-498
V12.M51,494-496

8052
enhancements, 41-43
external access (EA), 21
port 1,19

8052 simulator, 507-514
check program, 512-513
introduction, 507-508
Keypad Configuration window, 514
keypad simulator, 513
open Intel HEX file, 508
Program Analysis window, 513
view internal components of 8051,

509
view internal RAM, 509
view I/O ports, 510
view special function registers

(SFRs), 510-511
view terminal window, 511-512
view timers, 511

8052 timer 2,105-106
8085,21
8086,21
8088,21
8255,285-291,336-337

Absolute addressing, 57-58 Absolute
Call instructions (ACALL),

75-76,385-386

529

530 | INDEX

Absolute code segment, 171-173
Absolute jump, 73,76,158-159,389
Absolute segments, selecting, 171-173
AC. See Auxiliary carry flag (AC)
ACALL. See Absolute Call instructions

(ACALL)
Actuator, 8
ADC. See Analog-to-digital converter

(ADC)
ADC0804, 300-302
ADD, 63,386-387
ADD A, 386-387
ADDC. See Add with carry (ADDC)
Address bus

defined, 3,6
multiplexing, and data bus, 36-37

Address decoding, 40-41
Addressing modes

absolute addressing, 57-58
direct addressing, 52-53
immediate addressing, 54-55
indexed addressing, 59
indirect addressing, 53-54
long addressing, 58-59
register addressing, 50-52
relative addressing, 55-57

Address latch enable (ALE), 21,35-36
AddRoundKey, 516-519
Add with carry (ADDC), 63,387-388
Advanced Encryption Standard (AES)

block encryption, 515
defined, 375
illustration of process, 519
introduction, 515
working, 515-519

Advanced Micro Devices, Inc., 525
AES. See Advanced Encryption

Standard (AES)
AGAIN label, 238
AHEAD label, 238
AJMP. See Absolute jump
ALE. See Address latch enable (ALE)
Allen Systems, 521
ALU. See Arithmetic and logic unit

(ALU)
Analog input, 300-302,342-344
Analog output, 296-300,342-344
Analog-to-digital converter (ADC), 378
AND, 64,71-72
ANDed, 26
ANDing, 12
ANL, 389-391
ANL C, 391
Apple Macintosh, 9

Applications, 10-12
Application software, 8-9
Applied Microsystems Corp., 521
Aprotek, 521
Archival storage, 7
ARCNET token ring network protocol,

379
Arithmetic and logic unit (ALU), 4
Arithmetic instructions, 59-64
Arithmetic operators, 161,235
Array, 198-199,244
ASCII codes, 142-143,155,160,455
ASCII table, for decimal digits, 198-199
ASM51

assembler controls supported by,
173-175

macro processing facility (MPL),
183-188

Assembler, defined, 151-152
Assembler controls, 155,173-175
Assembler directives

assembler state control, 164-165
program linkage, 169-171
segment selection, 171-173
storage initialization/reservation,

166-169
symbol definition, 165-166

Assembler operation
ASM51 152-153
pass one, 153
pass two, 153-155

Assembler state control, 164-165
Assembler symbols, special, 157
Assemble-time error, 249
Assemble-time expression evaluation,

160-163
Assembly language program, 152
Assembly language programming

8051 C language as alternative to, 191
assembler controls, 173
assembler directives, 164-173
assembler operation, 152-155
assemble-time expression evaluation,

160-163
comments, 238-239
format, 155-160
labels, 237-238
linker operation, 173-176
linking relocatable segments and

modules, 176-183
macros, 183-188
overview, 151-152
program organization, 243
saving registers on stack, 239

use of equates, 239-240 use
of subroutines, 240-242
See also Structured programming

Assignment operators, 235-236
Asynchronous format, 111-112,115
AT89C15SND1C, 378
AT89C15SND2C, 378
ATM. See Automatic Teller Machine

(ATM)
Atmel, 378-379
"At" sign (@), 157,235
ATWebSEG-32, 379
Authentication, 372
Auto-decrement modes, 11 Auto-
increment, 11
Automatic Teller Machine (ATM),
372 Auto-reload mode, 105-106
Auxiliary carry flag (AC), 30-31
Avoset Systems, Inc., 522

Background interrupt level, 131-132
BACK label, 237
Base-level interrupt, 131-132
Basic input/output system (BIOS), 8
Baud rate, 111
Baud rate generation, 87,106
Baud rate summary, 122
Binary-coded decimal (BCD), 30,63
Binary data, convert voltage to, 8
Binary Technology, Inc., 522
BIOS. See Basic input/output system

(BIOS)
Bit address, 158
Bit-addressable internal data memory

(bdata), 166,197,202
Bit-addressable RAM, 26-27
Bit data type, 193-195
Bit testing, 73
Bitwise logical operators, 235-236
Block encryption, 515
Boolean accumulator, 30
Boolean instructions, 71-73
Boolean operations, 64
Boolean variable instruction, 60
Bootstrap loader, 8
Breakpoint, 249
B register, 32
Built-in interrupt system, 10
Bus, defined, 6. See also Address bus;

Control bus; Data bus
BUSY, 34
Buzzer interface, example, 100-101,

207-208
Bytes, 11

INDEX | 531

C, 151. See also 8051 C language; 8051
C programming style

CAD. See Computer-aided (CAD)
software

Caesar, Julius, 351
Caesar cipher, 351,372
Calculator, student project, 363-365
CALL instructions, 73-76,158-160. See

also Absolute call instructions
(ACALL); LCALL

CAN. See Controller Area Network
(CAN)

Capture mode, 106
Carriage return (CR), 239-240
Carry flag, 29-30
CASE statement, 230-234,237
Cathode-ray tube (CRT), 7
CD-ROM. See Compact-disc read-only

memory (CD-ROM)
Central environment, 255-256
Central processing unit (CPU), 3-5
Centronics parallel interface, 294-296,

340-341
Character output using interrupts,

example, 142-143,211-212
Character strings, 160
Character test, example, 228-230
Choice structure, 220

CASE statement, 230-231
GOTO statement, 234
IF/THEN/ELSE statement, 228-230

Ciphertext, 350
CJNE instruction, 77-78,185,392-394
Clear Accumulator, 394
Clear bit (CLR bit), 394-395
Cleared, 26
Clear to send (CTS), 291
CLOCK, 7
Clock cycle, 23-24
Clocking, serial port, 116
Clocking sources, 92-93
CLR bit. See Clear bit (CLR bit)
Code, 172,197
Code address, 158-159
CODE directive, 166
Code memory (code), 166,197
Code segment, 243
Command language, 9
Commands, 255-257
Comment blocks, 237
Comment field, 156-157
Comments, 155,238-239,243
Commodore Amiga, 9
Compact-disc read-only memory

(CD-ROM), 7

Compact memory, 198
Compare accumulator instruction, 185
Compare and Jump if Not Equal. See

CJNE
Compiler, 192-193
Complement Accumulator, 395
Complement bit, 395-396
Computer, defined, 3
Computer-aided (CAD) software, 250
Computer system, defined, 3
COM20051 379
Condition, 221
Conditional jumps, 77-78,238
Confidentiality, 372
Constant definitions, 245
Control bus, 3,6
Control flow operations, 187-188
Controller Area Network (CAN), 379
Control/monitor device, 7-8
CPL A, 395
CPL bit, 395-396
CPU. See Central processing unit (CPU)
Cross assembler, 152
Cross-compiler, 251
CRT. See Cathode-ray tube (CRT)
Cryptographic technique, 372
CTS. See Clear to send (CTS)
Cybernetic Micro Systems, Inc., 522

DA A. See Decimal adjust accumulator
(DA A)

DAC. See Digital-to-analog converter
(DAC)

"Dancing with bits," 66
Data, defined, 6. See also Internal data

memory (data)
Data address, 158
Data bus, 3,6,36-37
Data directives (DBs or DWs), 153,243
Data Encryption Standard (DES), 372,

515
Data pointer (DPTR), 33-34,9402
Data segment, 243
Data transfer instructions, 59

external RAM, 68-69
internal RAM, 66-68
look-up tables, 69-70

DB-9, 291
DB-25, 291, 294
DBIT directive, 168
D2 by Motorola, 1
Debugger, 249
Debugging, 248
DEC byte, 398-399

Decimal adjust accumulator (DA A),
30-31,63,396-397

Decision block, 218
Decmation, Inc., 522
Decrement, 398-399
Decrement and Jump if Not

Zero (DJNZ), 77,399-401
Decryption, 350

Define byte (DB) directive, 168-
169 Defines, 244
Define storage (DS) directive, 166-167
Define word (DW) directive, 169
DES. See Data Encryption Standard

(DES)
Development cycle

defined, 247-248
detailed steps in, 252
flowchart for, 248
hardware development, 249-251
software development, 248-249

Development environment, 256
Dictionary attack, 375
Digital signature, 372
Digital-to-analog converter (DAC),

296-300,378
DIP switch, 277
Direct access memory (DMA), 6
Direct addressing, 52-53
Directives. See individual directives
Directly addressable internal data

memory (data), 197,201-202
Disk interface, 10
DJNZ See Decrement and Jump if Not

Zero (DJNZ)
DMA. See Direct access memory

(DMA)
Double words, 11
DPTR. See Data pointer (DPTR)
DS. See Reserve memory directive (DS)
DS89C420, 379
DS5000 378-379
DS5240, 379
DS162O

command set, 303
configuration/status register, 306
interface to, 345-346
software for interface, 304-306

EA. See External access (EA)
ECHO.LST, 177-182
Elevator system, student project, 355-
358 Encryption, 350-351,372. See also

Advanced Encryption Standard
(AES)

532 | INDEX

END directive, 164
English alphabet, 351
Environments, 255-257
EPROM. See Erasable Programmable

Read-Only Memory (EPROM)
Equate directive (EQU), 153,166
Equates, 239-240
Erasable Programmable Read-Only

Memory (EPROM), 2,20-21,
37-38,172,254-255

Ethernet, 379
Event. See Interrupts
Event counting, 87-88,93
Exchange Accumulator with byte

variable, 427-428
Exchange Digit (XCHD), 428
Exclusive OR, 64
EXF2. See External input flag (EXF2)
EXIT subroutine, 241
EXORing bits, 12
Expression example, 163
External access (EA), 21
External code memory, accessing, 37-38
External data address space, 172
External data memory (xdata), 166,197,

201-202
External input flag (EXF2), 134
External interrupt, 143-148
External memory

accessing, 38-41
accessing external code memory,

36-41
address decoding, 40-41
multiplexing address bus and data

bus, 36-37
overlapping external code and data

spaces, 41
External RAM, 68-69
EXTRN directive, 170

Factorial operation (!), 84
Factory mask process, 254-255
Fetching, 4-5,37-38
Fields, 155-157. See also entries for

individual fields
Filename suffix, 251
Firmware, 13,254
Flag, 87
Flag flip-flop, 87
Flash memory, 377-378
flowcharts, 218
Foreground (base-level) interrupt,

131-132
"Forward references," 155

Frequencies, producing exact, 102-105
Fujitsu Microelectronics, Inc., 525
Full duplex, 111,117-118,125-126
Function definitions, 245
Function prototypes, 245
Functions

defined, 202
example of, 203
parameter passing, 203
return values, 204
use of, in 8051 C programming style,

244
Furnace controller, example, 144-145,

212-213

General controls, 173
General-purpose RAM, 24-26
GND. See Ground
(GND) GOTO statement,
234 Ground (GND), 291
G6RN, 307-310

Hardware
defined, 3
versus software, 8-9

Hardware architecture, 10-12
Hardware development, 249-251. See

also Development cycle
Hardware emulator, 253
Hexadecimal keypad interface, 265-267,

319-323
HEX records, 253-254
High-speed microcontrollers, 378-379
Hilech Equipment Corp., 523
Home security system, student project,

353-355
"Housekeeping" chores, 8
Human interface, 7
Huntsville Microsystems, Inc., 523

IBM, 8-9
IC. See Integrated circuit (IC)
IC manufacturers, 525
IDE. See µVision2 Integrated

Development Environment
(IDE)

Idle mode, 35
IE. See Interrupt enable register (IE)
IF/THEN/ELSE statement, 228-230,237
Immediate addressing, 54-55
Immediate data, 157-158
INC, 401
INC DPTR, 402
In-circuit emulator, 253

Includes, 245
Increment, 401-402
Increment Data Pointer, 402
Indentation, 219
Indexed addressing, 59
Indirect address, 53-54,157,236
Indirect internal data, 172
Indirectly addressable internal data

memory (idata), 166,197,202
Initializing serial port, 123,208
INLINE subroutine, 238-239
Input character subroutine, example,

125,209
Input/output block, 218
Input/output device (I/O device), 9

control/monitor device, 8
human interface device, 7
mass storage device, 7

Input/output expansion
8255,282-294,336-337
shift registers, 282,285-286,333-336

Input/output program, example of,
176-177

Input/output subroutines, 8-9
Instruction decode and control unit, 4
Instruction opcode, 4-5
Instruction register (IR), 4
Instructions

compensating for overhead due to,
103-105

definitions, 385-430
See also Assembler directives

Instruction set, 4
addressing modes, 50-
59 features, 10-12
instruction types, 59-
78 overview, 49

Instruction types
arithmetic, 59-64
Boolean instructions, 71-73 data
transfer instructions, 59,66-70
logical instructions, 59,64-66
program branching instructions, 73-
78 See also entries for individual types

Integrated circuit (IC), 1,5,9. See also
Random access memory
(RAM); Read-only memory
(ROM)

Integrity, 372
Intel Corporation, 1-2,173,431,525
Intel hexadecimal format, 253-254
Intel HEX file, 508
Interface circuit, defined, 3 Inter-
Integrated Circuit, 379

INDEX | 533

Internal data, 172
Internal data memory (data), 166,197,

201-202
Internal RAM, 24,66-68
Interrupt circuitry, 10-11
Interrupt-driven system, 131,249
Interrupt enable register (IE), 35,

132-133,435
Interrupt flag, 119
Interrupt flag bits, 134
Interrupt handler, 131
Interrupt latency, 149
Interrupt level, 131-132
Interrupt priority register (IP), 35,

133-134,435-436
Interrupts, 75-77

character output using, 211-212
enabling and disabling, 132-133
example, 131-132
external, 143-148
furnace controller, example, 212-213
intrusion warning system, example,

213-214
loudspeaker using, 146-148
memory organization when using, 138
organization, 132-135
overview, 131-132
polling sequence, 134-135
processing, 136
program design using, 137-139
serial port, 142-143
square wave using timer example, 210
timer, 139-141
two square waves using timer

example, 210-211
Interrupt service routine (ISR), 76,131,

137-139,249
Interrupt timings, 148-149
Interrupt vector, 136
Interval timing, 87-88,92-93
INTR line, 244
Intrusion warning system, example,

145-148,213-214
Invoking commands, 255-257
I/O device. See Input/output device (I/O

device)
IO.LST 178-183
I/O port structure, 22-23
IP. See Interrupt priority register (IP)
IR. See Instruction register (IR)
IR. See Interrupt service routine (IS)

JBC bit, 403-404
JC rel, 404

JMP@A+DPTR, 404-405
JMP mnemonic generic, 159
JNB bit,rel, 405
JNC instruction, 78
JNC rel, 406
JNZ instruction, 77,406-407
Joystick, 7
Jump if accumulator Not Zero, 406-407
Jump if accumulator Zero, 407
Jump if Bit Not set, 405
Jump if Bit set and Clear bit, 403-404
Jump if Carry is set, 404
Jump if Carry not set, 406
Jump indirect, 404-405
Jumps, 158-160,238. See also entries

for individual jumps
Jump tables, 74-75
JZ instruction, 77
JZ rel, 407

Keil Software, Inc., 192-193,204,523
Keyboard, 7
Keypad interface, software for, 268-

269. See also 7-segment LED
display, interface to

Key schedule, 516
Keyword, 219
KIM-1, 1

Label, 237-238
Label field, 155-157
Large interrupt service routine, 138-139
Large memory, 198
Large-scale integrated (LSI) chips, 8
LCALL instruction, 75-76,407-408
LIB51 251
Librarian, 251
Light pen, 7
Line feed (LF), 240
Linkage operation, 173-176
Linker, 151-152
Linker operation, 176
Link/locator, 173
Liquid crystal display (LCD), interface

to, 273-276,325-327
$LIST directive, 300
Listing file, 155
LJMP. See Long jump (LJMP)
Load Data Pointer with a 16-bit

constant, 413
Local label, 186-187
Location counter, 153
Logical-AND for bit variables, 391
Logical-AND for byte variables, 389-391

Logical Exclusive-OR for byte variables
(XRL), 428-430

Logical instructions, 59,64-66
Logical operations. See Boolean

instructions
Logical operators, 161
Logical-OR for bit variable, 419
Logical-OR for byte variable, 417-418
Logical Systems Corp., 523
Logic gate program, flowchart for, 14-15
Long addressing, 58-59
Long Call to subroutine, 407-408
Long interval instruction, 96-102
Long jump (LJMP), 73,76,158-159,

273,408
Look-up tables, 69-70
LOOP label, 237
Loop structure, 220

REPEAT/UNTIL statement, 226
search subroutine, 226-228
SUM subroutine, 222-224
WHILE/DO structure, 221-222,

224-225
Loudspeaker, 7

interface to, 276-279,327-329
interface using interrupts, 146-148

LSI. See Large-scale integrated (LSI)
chips

MAA. See Modulo Arithmetic
Accelerator (MAA)

MAC. See Message authentication code
(MAC)

Machine cycle, 23-24
Machine language, 151
Machine language program, 152
Macro processing facility (MPL),

183-188
Macros, 183

advantages in using, 184-185
control flow operations, 187-
188 example of, 184
local labels, 186-187
parameter passing, 185-186
repeat operations, 187

Mainframe computer, 9—l0
Main function, 245
Mass storage, 7
Maxim, 379
Maxim Integrated Product, 378
MC14499, interface to, 270-272
MCS-48, 1
MCS-51 2, 377

absolute maximum ratings, 444
A.C. characteristic, 445-446

534 | INDEX

MCS-51 Continued
block diagram, 441
comparison of different versions,

17-18,24
connections, 442
design considerations, 443
EPROM characteristics, 451-453
external clock drive, 450
external data memory read cyle, 448
external data memory write cycle, 448
external program memory read cycle,

447
features, 440
hardware architecture, 17-43
instruction set, 49-85
oscillator characteristics, 443
PIN descriptions, 441-443
serial port timing, shift register mode,

449
See also 8051; 8051 data sheet

MCS-151, 378-379 MCS-
251 377-379 Med ium
interval inst ruct ion , 96-102
Memory

external, 36-41
semiconductor, 5-6
small, medium, and large, 198
types for 8051 C language, 197

Memory map, 173-175,289
Memory models, for 8051 C language,

198
Memory organization

general-purpose RAM, 24-26
register banks, 27-28
when interrupts are used, 138

Message authentication code (MAC), 372
Microcomputer system, block diagram

of, 3,11
Microcontroller(s)

with ADCs and DACs, 378
defined, 1-2
with flash memory and NVRAM,

377-378
high-speed, 378-379
illus., implementation of simple logic

operation, 14
market needs and technology, 12-13
microprocessor versus, 10-12
network, 379
power, size, and complexity of, 2
secure, 379
speed, 13-15

Micromint, Inc., 523
Micromouse, student project, 366-369

Microphone, 7
Microprocessor, 9

versus microcontroller, 10-12
new concepts, 12-13

Minicomputer, 9-10
MixColumns, 516-519
Mnemonic field, 155-156
Mnemonics, 151
MOD operator, 161
Modular programming, 173,363
Module, defined, 152
Module name, 171
Modulo Arithmetic Accelerator (MAA),

379
MON51 See 8051 monitor program

(MON51)
Monitor program. See 8051 monitor

program (MON51)
MORE label, 237
MOS Technology, 1
Most significant bit (MSB), 92
Motorola, 1
Mouse, 7
MOV DPTR,#data16, 413
Move bit variable, 412-413
Move byte variable, 409-412
Move code byte or constant byte,

413-414
Move External, 414-416
MOVX instruction, 38-39
MPL. See Macro processing facility

(MPL)
MSB. See Most significant bit (MSB)
Multiple, 416
Multiprecision arithmetic, 64
Multiprocessor communications,

119-120
µVision2 Integrated Development

Environment (IDE), 499-505
compiling and debugging, 499-505
Disassembly window, 504
File window, 500
introduction, 499
Memory window, 502
Output options tab, 505
Regs window, 502
Serial window, 503
workspace for, 499

NAME directive, 171
NAND, 13-15,72
National Institute of Standards &

Technology (NIST), 515
National Semiconductor Corp., 300-302

Nested subroutine, 84,239
Network microcontrollers, 379
Nibbles, 11
Ninth data bit, 118
NIST. See National Institute of

Standards & Technology (NIST)
Nohau Corp., 524
Nonvolatile RAM (NVRAM) interface,

277-282,329-332
No Operation (NOP), 416-417
NOR operator, 72
NOT operator, 64,72,161
Number bases, 160
Number sign (#), 54
NVRAM, 377-378

Object file, 155
OE. See Output Enable (OE)
Off-page connector, 218
ONCHIP, 172
On-chip oscillator input, 22-23
One pass assembler, 153
One-Time Programmable (OTP) ROM,

377
Online storage, 7
"On the fly," 96
Opcode fetch cycle, bus activity for, 5
Opcodes, 21,37-38
Operand field, 155-157
Operating system software, 8-9
Operator precedence, 163,236
Optical disc, 7
OR, 64,71-72
Order, 219
ORed, 26
ORG directive, 164,172
ORing, 12
Oscillator, 22
Oscillator clock cycle, 23-24
Output character (OUTCHR) subroutine,

123-124,209,240-241
Output Enable (OE), 20
OUTSTR subroutine, 240-242
OV. See Overflow flag (OV)
Overflow flag (OV)

defined, 31-32
timer modes and, 90-92

Overhead, compensating for, due to
instructions, 103-105

P. See Parity bit (P)
Paged external data memory (pdata),

197,202
Parallel interface, 10-11

INDEX | 535

Parameter passing, 185-186,203-204
Parity bit (P)

adding, 118-119
defined, 32

Pascal, 151
Pass one, 153
Pass two, 153-155
PC, 8-9
PC. See Program counter (PC)
PCBs. See Printed circuit boards (PCBs)
PCON. See Power control register

(PCON)
Pedestrian traffic light system, 307-310,

347-348
Peripheral device, defined, 3
Personal Identification Numbers (PINs),

372
Philips, 379
PINs. See Personal Identification

Numbers (PINE)
PKI. See Public-key infrastructure (PM)
Pointers

defined, 199
different ways of accessing data,

200-201
memory type, 201
typed, 201-202
untyped, 202
use of, in 8051 C programming style,

244
Pointer's memory type, 201-202
Polling sequence, 134-135
Polyalphabetic cipher, 372
Pop from stack (POP direct), 419-420
Port 0,18
Port 1, 18-19
Port 2,19
Port 3,19-21
Port register, 34
Pound sign (#), 157-158
Power connection, 22
Power control register (PCON), 35-36,

431-432
Power down mode, 35-36
PPI. See Programmable peripheral

interface (PPI)
Precedence operation, 236
Pre-defined process (subroutine), 218
Printed circuit boards (PCBs), 250
Printer, 7
Process box, 218
Program branching instruction, 60

conditional jumps, 77-78
interrupts, 75-77

jump tables, 74-75
subroutines, 75-77
variations of, 73

Program counter (PC), 4
Program development

commands and environment, 255-257
development cycle, 247-251
integration and verification, 251-255

Program flow arrow, 218
Program linkage, 169-171
Programmable peripheral interface

(PPI), 285. See also 8255
Program organization, in 8051 C

programming style, 245
Program(s)

defined, 5-6,152
types of, 8-9
See also Software

Program status word (PSW), 437-438
auxiliary carry flag (AC), 30-31
carry flag, 29-30
overflow flag (OV), 31-32
parity bit (P), 32
register bank select bits, 31

Program Store Enable (PSEN), 20-21,
35-37

Program terminator, 218
PROM programmer, 378
PSEN. See Program Store Enable

(PSEN)
Pseudo code, 217-218

examples of subroutines, 234-235
suggested syntax for, 235-237

PSW. See Program status word (PSW)
PUBLIC directive, 169-170
Public-key infrastructure (PKI), 379
Pulse wave generation, example, 97,

205-206
PUSH instruction, 67
Push onto stack (PUSH direct)

instruction, 420

RAM. See Random access memory
(RAM)

RAM data location, 243. See also Data
segment

Random access memory (RAM), 8
bit-addressable, 26-27
defined, 3
external, 68-69
features, 5-6
general purpose, 24-26
internal, 66-68
testing software, 253-254

RCA, 1
READ, 7
READ control signal, 4
"Read latch," 22
Read-modify-write operation, 22
Read-only memory (ROM), 8

defined, 3
features, 5-6

"Read pin," 22
Receive buffering, 111
Receive data (RXD), 291
Receive interrupt flag (RI), 119,134
Receiver enable (REN), 118
Reg51.h 195-196
Register addressing, 50-52
Register bank, 27-28
Register bank select bits, 31
Registers, 4,239
Relational expression, 221
Relational Memory Systems, Inc., 524
Relational operator, 162,235-236
Relative addressing, 55-57
Relative jump, 158-159
Relays, interface to, 306-310,346-348
Relocatable object file, 155
Relocatable object models, 251
Relocatable segment (RSEG), 171,

176-183
REN. See Receiver enable (REN)
Repeat operations, 187
REPEAT/UNTIL statement, 226,237
Reserved words, 235
Reserve memory directive (DS), 153
Reset (RST), 22,43
Resident, 255
RET instruction, 76,420-421
RETI instruction, 76,138-139,421-422
RETURN, 240
Return from interrupt, 421-422
Return from subroutine, 420-421
Return values, 204
RI. See Receive interrupt flag (RI)
RL51 173, 251
RL A, 422
RLC A, 422-423
Robot, 366. See also entries for

individual robots
ROM. See Read-only memory (ROM)
Rotate Accumulator, 423
Rotate Accumulator Left, 422
Rotate Accumulator Left through the

Carry flag, 422-423
Rotate Accumulator Right through Carry

flag, 423

536 | INDEX

Rotor, 310-311
Round, 516
Round key, 516
Round-off errors, example, 103,127
RR A, 423
RRC A, 423
RSEG. See Relocatable segment (RSEG)
RSEG directive, 165-166
RS232 (IEA-232) serial interface,

294-294,337-340
RST. See Reset (RST)
Run-time error, 249
RXD. See Receive data (RXD)

SAB80C515A,378 378
SBC. See Single-board computer (SBC)
SBC-51, 259

components and parts, 260
printed circuit board version of, 266
schematic design for, 260-265

Sbit data type, 193-195
SBUF. See Serial port buffer register

(SBUF)
Schottky TTL, 22
Scientific Engineering Laboratories,

Inc., 524
SCON. See Serial port control register

(SCON)
SDK-85, 1
Search subroutine, 226-228
Secret key, 516
Secure microcontrollers, 379
Segment, defined, 152
SEGMENT directive, 165
Segment selection directives, 171-173
Semiconductor memory, 5-6
SEND label, 238
Sensors, 8,303-306,344-346
Serial communication, 111-112,

117-118
Serial data buffer (SBUF), 34
Serial interface, 10-11
Serial port

block diagram of,
112 clocking, 116
initializing, 123,208
input character subroutine, 209
modes, 114
output character subroutine, 209
setting T1 flag, 116

Serial port baud rate baud
rate summary, 122
compensating for round-off errors

example, 127

default, 120-121
full duplex operation example,

125-126
initializing serial port example, 123
input character subroutine example,

125
output character subroutine example,

123-124
using timer 1 as baud rate clock,

121-127
"wait loop," 124

Serial port buffer register (SBUF),
111-112

Serial port control register (SCON), 35,
111,113,433-435

Serial port interrupts, 142-143
Serial port operation

full duplex serial communication,
117-118

initialization and accessing serial port
registers, 118-119

modes of, 113-117
multiprocessor communications,

119-120
serial communication, 111-112 serial
port baud rates, 120-127 serial port
buffer register (SBUF), 112 serial
port control register (SCON),

113
Serial port receive timing, 115
Serial port register, 34-35,118-119
Serial port shift register mode, 115
Serial port transmit timing, 114
Set, 226
SETB, 424
Set Bit, 424
SET directive, 166
SFR. See Special function register (SFR)
Sfr data type, 194-195
Sfr16 data type, 194-195
Shift register mode, 115
Shift registers, 282,285-286,333-336
ShiftRows, 516-517
Short interval instruction, 96-102
Short jump (SJMP), 73,424-425
Siemens Corporation, 2,378
Signetics/Philips, 525
Simens Compponents, Inc., 525
Simulator, 251-253
Sine wave table, 297-300
Single-board computer (SBC), 1,250
Single Board Systems, 524
Single-stepping, 249
SJMP. See Short jump (SJMP)

SKIP label, 238
Small interrupt service routine,

137-138
Small memory, 198
Smart card, 350,371-374
Soccer-playing robot, 369-371
Software

defined, 3,5
designing, 249
editing and translation, 249
hardware versus, 8-9
levels of, 9
preliminary testing, 249
See also Development cycle;

Program
Software Development Systems, Inc.,

524
Software simulation, 251-253
SP. See Stack pointer (SP)
Special assembler symbols, 157
Special function register (SFR)

8051 instruction, 28
accumulator, 28
B register, 32
data pointer (DPTR), 33-34
interrupt enable register (1E), 35,435
interrupt priority register (IP),

435-436
memory map, 432
port register, 34
power control register (PCON),

35-36,431-432
program status word (PSW), 29-32,

437-438
serial port control register (SCON),

433-435
serial port register, 34-35
stack pointer (SP), 33
timer, 88-89
timer/counter control register

(TCON), 433
timer/counter 2 control register

(T2CON), 436-437
time register, 34

Special operator, 162
Split timer mode, 92
SQUARE subroutine, 70
Square wave generation, example, 98
Square wave using timer interrupts,

example, 139-141
Stack, save registers on, 239
Stack pointer (SP), 33
Standard Microsystems, 379
Start-up programs, 8-9

INDEX | 537

State, 23-24
Statement block, 220

Stator, 310
Stepper motor

configuration of stator windings of,

310
half-step rotation of, 311
interface to, 312,348-350
rotating rotor of, 311

software for interface to, 313-315

Storage initialization/reservation, 166-169
String replacement facility, 183. See also

Macros

Structure, 199
Structured programming

8051 C programming style, 243-245
advantages and disadvantages of,

219-220
assembly language programming

style, 237-243
choice, 220,228-234
choice structure, 228-234

loops, 220-228
overview, 217-219
pseudo code syntax, 234-237
statement block, 220

SUBB. See Subtract with borrow
(SUBB)

SubBytes, 516-517

Subroutines, 75-77
use of, 240-242
use of registers within, 239

See also Interrupts and entries for

individual types of subroutines
Subtract with borrow (SUBB), 61-62,

425-426

SUM subroutine, 222-224
Swap nibble within Accumulator (SWAP

A), 66,426-427

Symbol, 156. See also entries for

individual symbols
Symbol definition, 165-166

Symbol table, 153,173-175,183
Synchronous format, 111-112,115
Syntax error, 249

TCON. See Timer/counter control
register (TCON)

TF2. See Timer overflow flag (TF2)
TI. See Transmit interrupt flag (TI)
Tic-tac-toe, student project, 358-363
Timed intervals, 96-102
Timer/counter control register (TCON),

34,89-90,93-94,433

Timer/counter 2 control register
(T2CON), 42,102

Timer interrupts, 139-141
Timer mode register (TMOD), 34,89
Timer operation, 87-109

baud rate generation, 106

clocking sources, 92-93

8052 timer 2,105-106
initializing and accessing timer

registers, 95-96

overview, 87-89
producing exact frequencies, 102-105

short, medium, and long intervals,

96-102
starting, stopping, and controlling

timers, 93-95
timer control register (TCON), 89

timer mode register (TMOD), 34,89
timer modes and overflow flag (OV),

90-92

Timer overflow flag (TF2), 134
Timer register, 34,42,95-96

Timer(s)
defined, 87-88
example, 99-100,205

modes, 34,90-92
reading "on the fly," 96

starting, stopping, and controlling,

93-95
Timer special function registers, 88-89
MOD. See Timer mode register

(TMOD)

Transient, 255
Transistor-transistor logic (TTL), 15
Transistor-transistor logic (TEL)

oscillator, 22-23
Translation step, 250-252

Transmit data (TXD), 291

Transmit interrupt flag (TI), 119,134
TTL. See Transistor-transistor logic

(TTL)

T2CON. See Timer/counter 2 control
register (T2CON)

Two-pass assembler, 153-155
Two square waves using interrupts,

example, 140-141,210-211
TXD. See Transmit data (TXD)
Typed pointer, 201-202

UART. See Universal asynchronous
receiver/transmitter (UART)

Ultra-violet (UV) EPROM eraser, 378
Universal asynchronous receiver/

transmitter (UART), 115-117

Universal Cross Assemblers,
524 Untyped pointer, 202

URDA, Inc., 525
USB 1.1,378
User response, example, 231-
234 USING directive, 164-165
Utility program, 9

Variable definitions, 245
VDT. See Video display terminal
(VDT) Video display terminal (VDT), 7
Voltage, convert, to binary data, 8

WAIT label, 238

"Wait loop," 124,137
Waveform example, 140
WHILE/DO structure, 221-222,

224-225,237
Words, 11

WORM, 7
WRITE, 7
WR line, 244

XCH. See Exchange Accumulator with
byte variable

XCHD. See Exchange Digit (XCHD)
Xdata. See External data memory (xdata)

XICOR, Inc., 291
X2444 nonvolatile RAM, 282

cover page for datasheet, 280
interface to, 281

software for interface, 283-284
timing for recall instruction, 285

XRL. See Logical Exclusive-OR for byte
variables (XRL)

XTAL1, 22
XTAL2, 22

Zilog, 1 Z-
World, 525

538 | BIBLIOGRAPHY

	Cover
	The 8051 Microcontroller
	Preface
	Contents
	Chapter 1 - Introduction to Microcontrollers
	1.1 INTRODUCTION
	1.2 TERMINOLOGY
	1.3 THE CENTRAL PROCESSING UNIT
	1.4 SEMICONDUCTOR MEMORY: RAM AND ROM
	1.5 THE BUSES: ADDRESS, DATA, AND CONTROL
	1.6 INPUT/OUTPUT DEVICES
	1.6.1 Mass Storage Devices
	1.6.2 Human Interface Devices
	1.6.3 Control/Monitor Devices

	1.7 PROGRAMS: BIG AND SMALL
	1.8 MICROS, MINIS, AND MAINFRAMES
	1.9 MICROPROCESSORS VS. MICROCONTROLLERS
	1.9.1 Hardware Architecture
	1.9.2 Applications
	1.9.3 Instruction Set Features
	1.10 NEW CONCEPTS
	1.11 GAINS AND LOSSES: A DESIGN EXAMPLE
	PROBLEMS

	Chapter 2 - Hardware Summary
	2.1 MCS-51TM FAMILY OVERVIEW
	2.2 ONCE AROUND THE PINS
	2.2.1 Port 0
	2.2.2 Port 1
	2.2.3 Port 2
	2.2.4 Port 3
	2.2.5 PSEN (Program Store Enable)
	2.2.6 ALE (Address Latch Enable)
	2.2.7 EA (External Access)
	2.2.8 RST (Reset)
	2.2.9 On-Chip Oscillator Inputs
	2.2.10 Power Connections

	2.3 I/O PORT STRUCTURE
	2.4 TIMING AND THE MACHINE CYCLE
	2.5 MEMORY ORGANIZATION
	2.5.1 General-Purpose RAM
	2.5.2 Bit-Addressable RAM
	2.5.3 Register Banks

	2.6 SPECIAL FUNCTION REGISTERS
	2.6.1 Program Status Word
	2.6.2 B Register
	2.6.3 Stack Pointer
	2.6.4 Data Pointer
	2.6.5 Port Registers
	2.6.6 Timer Registers
	2.6.7 Serial Port Registers
	2.6.8 Interrupt Registers
	2.6.9 Power Control Register

	2.7 EXTERNAL MEMORY
	2.7.1 Accessing External Code Memory
	2.7.2 Accessing External Memory
	2.7.3 Address Decoding
	2.7.4 Overlapping the External Code and Data Spaces

	2.8 8032/8052 ENHANCEMENTS
	2.9 RESET OPERATION
	SUMMARY
	PROBLEMS

	Chapter 3 - Instruction Set Summary
	3.1 INTRODUCTION
	3.2 ADDRESSING MODES
	3.2.1 Register Addressing
	3.2.2 Direct Addressing
	3.2.3 Indirect Addressing
	3.2.4 Immediate Addressing
	3.2.5 Relative Addressing
	3.2.6 Absolute Addressing
	3.2.7 Long Addressing
	3.2.8 Indexed Addressing

	3.3 INSTRUCTION TYPES
	3.3.1 Arithmetic Instructions
	3.3.2 Logical Instructions
	3.3.3 Data Transfer Instructions
	3.3.4 Boolean Instructions
	3.3.5 Program Branching Instructions

	SUMMARY
	PROBLEMS

	Chapter 4 - Timer Operation
	4.1 INTRODUCTION
	4.2 TIMER MODE REGISTER (TMOD)
	4.3 TIMER CONTROL REGISTER (TCON)
	4.4 TIMER MODES AND THE OVERFLOW FLAG
	4.4.1 13-Bit Timer Mode (Mode 0)
	4.4.2 16-Bit Timer Mode (Mode 1)
	4.4.3 8-Bit Auto-Reload Mode (Mode 2)
	4.4.4 Split Timer Mode (Mode 3)

	4.5 CLOCKING SOURCES
	4.5.1 Interval Timing
	4.5.2 Event Counting

	4.6 STARTING, STOPPING, AND CONTROLLING THE TIMERS
	4.7 INITIALIZING AND ACCESSING TIMER REGISTERS
	4.7.1 Reading a Timer "on the Fly"

	4.8 SHORT, MEDIUM, AND LONG INTERVALS
	4.9 PRODUCING EXACT FREQUENCIES
	4.9.1 Eliminating Round-off Errors
	4.9.2 Compensating for Overhead Due to Instructions

	4.10 8052 TIMER 2
	4.10.1 Auto-Reload Mode
	4.10.2 Capture Mode

	4.11 BAUD RATE GENERATION
	SUMMARY
	PROBLEMS

	Chapter 5 - Serial Port Operation
	5.1 INTRODUCTION
	5.2 SERIAL COMMUNICATION
	5.3 SERIAL PORT BUFFER REGISTER (SBUF)
	5.4 SERIAL PORT CONTROL REGISTER (SCON)
	5.5 MODES OF OPERATION
	5.5.1 8-Bit Shift Register (Mode 0)
	5.5.2 8-Bit UART with Variable Baud Rate (Mode 1)
	5.5.3 9-Bit UART with Fixed Baud Rate (Mode 2)
	5.5.4 9-Bit UART with Variable Baud Rate (Mode 3)

	5.6 FULL DUPLEX SERIAL COMMUNICATION: ISSUES
	5.7 INITIALIZATION AND ACCESSING SERIAL PORT REGISTERS
	5.7.1 Receiver Enable
	5.7.2 The Ninth Data Bit
	5.7.3 Adding a Parity Bit
	5.7.4 Interrupt Flags

	5.8 MULTIPROCESSOR COMMUNICATIONS
	5.9 SERIAL PORT BAUD RATES
	5.9.1 Using Timer 1 as the Baud Rate Clock
	SUMMARY
	PROBLEMS

	Chapter 6 - Interrupts
	6.1 INTRODUCTION
	6.2 8051 INTERRUPT ORGANIZATION
	6.2.1 Enabling and Disabling Interrupts
	6.2.2 Interrupt Priority
	6.2.3 Polling Sequence

	6.3 PROCESSING INTERRUPTS
	6.3.1 Interrupt Vectors

	6.4 PROGRAM DESIGN USING INTERRUPTS
	6.4.1 Small Interrupt Service Routines
	6.4.2 Large Interrupt Service Routines

	6.5 TIMER INTERRUPTS
	6.6 SERIAL PORT INTERRUPTS
	6.7 EXTERNAL INTERRUPTS
	6.8 INTERRUPT TIMINGS
	SUMMARY
	PROBLEMS

	Chapter 7 - Assembly Language Programming
	7.1 INTRODUCTION
	7.2 ASSEMBLER OPERATION
	7.2.1 Pass One
	7.2.2 Pass Two

	7.3 ASSEMBLY LANGUAGE PROGRAM FORMAT
	7.3.1 Label Field
	7.3.2 Mnemonic Field
	7.3.3 Operand Field
	7.3.4 Comment Field
	7.3.5 Special Assembler Symbols
	7.3.6 Indirect Address
	7.3.7 Immediate Data
	7.3.8 Data Address
	7.3.9 Bit Address
	7.3.10 Code Address
	7.3.11 Generic Jumps and Calls

	7.4 ASSEMBLE-TIME EXPRESSION EVALUATION
	7.4.1 Number Bases
	7.4.2 Character Strings
	7.4.3 Arithmetic Operators
	7.4.4 Logical Operators
	7.4.5 Special Operators
	7.4.6 Relational Operators
	7.4.7 Expression Examples
	7.4.8 Operator Precedence

	7.5 ASSEMBLER DIRECTIVES
	7.5.1 Assembler State Control
	7.5.2 Symbol Definition
	7.5.3 Storage Initialization/Reservation
	7.5.4 Program Linkage
	7.5.5 Segment Selection Directives

	7.6 ASSEMBLER CONTROLS
	7.7 LINKER OPERATION
	7.8 ANNOTATED EXAMPLE: LINKING RELOCATABLE SEGMENTS AND MODULES
	7.8.1 ECHO.LST
	7.8.2 IO.LST
	7.8.3 EXAMPLE.M51

	7.9 MACROS
	SUMMARY
	PROBLEMS

	Chapter 8 - 8051 C Programming
	8.1 INTRODUCTION
	8.2 ADVANTAGES AND DISADVANTAGES OF 8051 C
	8.3 8051 C COMPILERS
	8.4 DATA TYPES
	8.5 MEMORY TYPES AND MODELS
	8.6 ARRAYS
	8.7 STRUCTURES
	8.8 POINTERS
	8.8.1 A Pointer's Memory Type
	8.8.2 Typed Pointers
	8.8.3 Untyped Pointers

	8.9 FUNCTIONS
	8.9.1 Parameter Passing
	8.9.2 Return Values

	8.10 SOME 8051 C EXAMPLES
	8.10.1 The First Program
	8.10.2 Timers
	8.10.3 Serial Port
	8.10.4 Interrupts

	SUMMARY
	PROBLEMS

	Chapter 9 - Program Structure and Design
	9.1 INTRODUCTION
	9.2 ADVANTAGES AND DISADVANTAGES OF STRUCTURED PROGRAMMING
	9.3 THE THREE STRUCTURES
	9.3.1 Statements
	9.3.2 The Loop Structure
	9.3.3 The Choice Structure

	9.4 PSEUDO CODE SYNTAX
	9.5 ASSEMBLY LANGUAGE PROGRAMMING STYLE
	9.5.1 Labels
	9.5.2 Comments
	9.5.3 Comment Blocks
	9.5.4 Saving Registers on the Stack
	9.5.5 The Use of Equates
	9.5.6 The Use of Subroutines
	9.5.7 Program Organization

	9.6 8051 C PROGRAMMING STYLE
	9.6.1 Comments
	9.6.2 The Use of Defines
	9.6.3 The Use of Functions
	9.6.4 The Use of Arrays and Pointers

	SUMMARY
	PROBLEMS

	Chapter 10 - Tools and Techniques for Program Development
	10.1 INTRODUCTION
	10.2 THE DEVELOPMENT CYCLE
	10.2.1 Software Development
	10.2.2 Hardware Development

	10.3 INTEGRATION AND VERIFICATION
	10.3.1 Software Simulation
	10.3.2 Hardware Emulation
	10.3.3 Execution from RAM
	10.3.4 Execution from EPROM
	10.3.5 The Factory Mask Process

	10.4 COMMANDS AND ENVIRONMENTS
	SUMMARY
	PROBLEMS

	Chapter 11 - Design and Interface Examples
	11.1 INTRODUCTION
	11.2 THE SBC-51
	11.3 HEXADECIMAL KEYPAD INTERFACE
	11.4 INTERFACE TO MULTIPLE 7-SEGMENT LEDS
	11.5 INTERFACE TO LIQUID CRYSTAL DISPLAYS (LCDS)
	11.6 LOUDSPEAKER INTERFACE
	11.7 NONVOLATILE RAM INTERFACE
	11.8 INPUT/OUTPUT EXPANSION
	11.8.1 Using Shift Registers
	11.8.2 Using the 8255

	11.9 RS232 (EIA-232) SERIAL INTERFACE
	11.10 CENTRONICS PARALLEL INTERFACE
	11.11 ANALOG OUTPUT
	11.12 ANALOG INPUT
	11.13 INTERFACE TO SENSORS
	11.14 INTERFACE TO RELAYS
	11.15 STEPPER MOTOR INTERFACE
	SUMMARY
	PROBLEMS

	Chapter 12 - Design and Interface Examples in C
	12.1 INTRODUCTION
	12.2 HEXADECIMAL KEYPAD INTERFACE
	12.3 INTERFACE TO MULTIPLE 7-SEGMENT LEDS
	12.4 INTERFACE TO LIQUID CRYSTAL DISPLAYS (LCDS)
	12.5 LOUDSPEAKER INTERFACE
	12.6 NONVOLATILE RAM INTERFACE
	12.7 INPUT/OUTPUT EXPANSION
	12.8 RS232 (EIA-232) SERIAL INTERFACE
	12.9 CENTRONICS PARALLEL INTERFACE
	12.10 ANALOG OUTPUT
	12.11 ANALOG INPUT
	12.12 INTERFACE TO SENSORS
	12.13 INTERFACE TO RELAYS
	12.14 STEPPER MOTOR INTERFACE
	PROBLEMS

	Chapter 13 - Example Student Projects
	13.1 INTRODUCTION
	13.2 HOME SECURITY SYSTEM
	13.2.1 Project Description
	13.2.2 System Specifications
	13.2.3 System Design
	13.2.4 Software Design

	13.3 ELEVATOR SYSTEM
	13.3.1 Project Description
	13.3.2 System Specifications
	13.3.3 System Design
	13.3.4 Software Design

	13.4 TIC-TAC-TOE
	13.4.1 Project Description
	13.4.2 System Specifications
	13.4.3 Software Design

	13.5 CALCULATOR
	13.5.1 Project Description
	13.5.2 System Specifications
	13.5.3 Software Design

	13.6 MICROMOUSE
	13.6.1 Project Description
	13.6.2 System Specifications
	13.6.3 System Design
	13.6.4 Software Design

	13.7 A SOCCER-PLAYING ROBOT
	13.7.1 Project Description
	13.7.2 System Specifications
	13.7.3 System Design
	13.7.4 Software Design

	13.8 A SMART CARD APPLICATION
	13.8.1 Basic Security Concepts
	13.8.2 Project Description
	13.8.3 System Specifications
	13.8.4 Software Design

	SUMMARY
	PROBLEMS

	Chapter 14 - 8051 Derivatives
	14.1 INTRODUCTION
	14.2 MCS-151TM AND MCS-251TM
	14.3 MICROCONTROLLERS WITH FLASH MEMORY AND NVRAM
	14.4 MICROCONTROLLERS WITH ADCS AND DACS
	14.5 HIGH-SPEED MICROCONTROLLERS
	14.6 NETWORK MICROCONTROLLERS
	14.7 SECURE MICROCONTROLLERS
	SUMMARY
	PROBLEMS

	Appendix A - Quick Reference Chart
	Appendix B - Opcode Map
	Appendix C - Instruction Definitions
	Appendix D - Special Function Registers
	PCON (POWER CONTROL REGISTER)
	TCON (TIMER/COUNTER CONTROL REGISTER)
	SCON (SERIAL CONTROL REGISTER)
	IE (INTERRUPT ENABLE REGISTER)
	IP (INTERRUPT PRIORITY REGISTER)
	T2CON (TIMER/COUNTER 2 CONTROL REGISTER)
	PSW (PROGRAM STATUS WORD)

	Appendix E - 8051 Data Sheet
	Appendix F - ASCII Code Chart
	Appendix G - MON51—An 8051 Monitor Program
	Appendix H - A Guide to Keil's μVISION2 IDE
	Appendix I - A Guide to the 8052Simulator
	Appendix J - The Advanced Encryption Standard
	Appendex K - Sources of 8051 Development Products
	BIBLIOGRAPHY
	INDEX

#include <AT89X51.H>

void main(void)
 {
 while (1) // two machie cycle
 {
 P1_0 = 1; // one machie cycle
 P1_0 = 0; // one machie cycle
 }
 }

#include <AT89X51.H>

void main(void)
 {
 TMOD = 0x02; // timer 0 8 bit auto reload mode
 TH0 = -50; // -50 reload value in TH0
 TR0 = 1;

 while (1) // endless loop
 {
 while (!TF0); // wait for overflow
 TF0 = 0; // clear timer overflow flag
 P1_0 = ~P1_0; // toggle port bit
 }
 }

#include <AT89X51.H>

void main(void)
 {
 TMOD = 0x01; // 16 bit timer mode

 while (1) // endless loop
 {
 TH0 = 0xFE; // -500 (high byte)
 TL0 = 0x0C; // -500 (low byte)
 TR0 = 1; // start timer 0

 while (!TF0); // wait for overflow
 TR0 = 0; // stop timer
 TF0 = 0; // clear timer overflow flag
 P1_0 = ~P1_0; // toggle port bit
 }
 }

#include <AT89X51.H>

#define HUNDRED 100; // 100 *10000 uS = 1 second
#define COUNT -1000;

char pass;
void DELAY(void); // function prototype

void main(void)
 {
 TMOD = 0x01; // use timer 0 in mode 1
 while (1) // endless loop
 {
 while (!P1_6); // wait for 1 input
 while (P1_6); // wait for 0 input
 P1_7 = 1; // turn buzzer on
 DELAY(); // wait 1 second
 P1_7 = 0; // turn buzzer off
 }
 }

void DELAY(void)
 {
 pass = HUNDRED;
 do
 {
 TH0 = COUNT>>8; // -10000 (high byte)
 TL0 = COUNT&0x00FF; // -10000 (low byte)
 TR0 = 1; // start timer 0

 while (!TF0); // wait for overflow
 TF0 = 0; // clear timer overflow flag
 TR0 = 0; // stop timer
 } while (--pass>0);
 }

#include <AT89X51.H>

void SerialInit(void)
 {
 SCON = 0x52; // Serial port mode 1
 TMOD = 0x20; // timer 1 -> mode 2
 TH1 = -13; // reload count for 2400 Baud
 TR1 = 1; // start timer 1
 }

#include <AT89X51.H>

void SerialOut(unsigned char ASCII)
 {
 while (!TI); // TX empty? No: check again
 TI = 0; // Yes: Clear flag
 SBUF = ASCII; // send character
 }

#include <AT89X51.H>

char SerialIn(void)
 {
 while (!RI); // wait for a character
 RI = 0; // Clear flag
 return SBUF; // read dan return a character
 }

#include <AT89X51.H>

// Timer 0 interrupt service routine
void T0ISR (void) interrupt 1
 {
 P1_0 = ~P1_0; // toggle port bit
 }

void main (void)
 {
 TMOD = 0x02; // timer 0, mode 2
 TH0 = -50; // 50 uS delay
 TR0 = 1; // start timer 0
 IE = 0x82; // enable timer 0 interrupt

 while (1); // do nothing
 }

#include <AT89X51.H>

void main (void)
 {
 // setup Timer 0 for mode 2; Timere1 for mode 1
 TMOD = 0x12;

 TH0 = -71; // 7 kHz using timer 0
 TR0 = 1; // start timer 0
 TF1 = 1; // force timer 1 interrupt
 IE = 0x8A; // enbale both timer interrupt

 while (1);
 }

// Timer 0 Interrupt service routine
void T0ISR (void) interrupt 1
 {
 P1_7 = ~P1_7; // toggle port bit
 }

// Timer 1 Interrupt service routine
void T1ISR (void) interrupt 3
 {
 TR1 = 0;

 // define 1 ms (1000 uS) time constant
 TH1 = (-1000)>>8; // high byte of -1000
 TL1 = (-1000)&0X00FF; // low byte of -1000
 TR1 = 1;
 P1_6 = ~P1_6;
 }

#include <AT89X51.H>

char ASCII;

void main (void)
 {
 // Baudrate generator setup
 TMOD = 0x20; // timer 1, mode 2
 TH1 = -26; // 1200 Baud reload value
 TR1 = 1; // start timer

 // Serial Port setup
 // Mode 1
 // set T1 to force firsy interrupt
 // to send first character
 SCON = 0x42; // 0100 0010
 ASCII = 0x20; // start with SPACE (ASCII code 0x20)
 IE = 0x90; // enable Serial Port interrupt

 // endless loop
 while (1); // do nothing
 }

// Serial Port interrupt service routine
void SPISR (void) interrupt 4
 {
 if (ASCII > 0x7E) // Last character of ASCII code?
 ASCII = 0x20; // start over with SPACE (ASCII code 0x20)
 SBUF = ASCII; // send character to serial port
 ASCII++; // next ASCII character
 TI = 0; // clear interrupt flag
 }

#include <AT89X51.H>

// External 0 interrupt service routine
void EX0ISR (void) interrupt 0
 {
 P1_7 = 0; // turn furnace off
 }

// External 1 interrupt service routine
void EX1ISR (void) interrupt 2
 {
 P1_7 = 1; // turn furnace on
 }

void main (void)
 {
 // setup External 0 & 1 interrupt
 IE = 0x85; // enable external interrupt
 IT0 = 1; // negative edge triggered
 IT1 = 1; // negative edge triggered

 // initial furnace setup
 P1_7 = 1; // turn furnace on
 if (!P3_2) // if T > 21 degrees
 P1_7 = 0; // turn furnace off

 // endless loop
 while (1); // do nothing
 }

#include <AT89X51.H>

char pass;

void main (void)
 {
 // setup External 0 & timer interrupt
 IT0 = 1; // negative edge triggered
 TMOD = 11; // time 0 & 1 ->16 bit timer mode
 IE = 0x81; // enable external 0 interrupt only

 // endless loop
 while (1); // do nothing
 }

// External 0 interrupt service routine
void EX0ISR (void) interrupt 0
 {
 pass = 20; // 20 * 5000 uS = 1 second
 TF0 = 1; // force timer 0 interrupt
 TF1 = 1; // force timer 1 interrupt
 ET0 = 1; // begin tone for 1 second
 ET1 = 1; // enable timer interrupts
 } // timer interrupt will do the work

// Timer 0 interrupt service routine
void T0ISR (void) interrupt 1
 {
 TR0 = 0; // stop timer 0
 if (--pass == 0) // if 20th time
 {
 ET0 = 0; // disable tone
 ET1 = 0; // disable itself
 return;
 }

 // continue making tone
 TH0 = (-50000)>>8; // 0.05 second delay
 TL0 = (-50000)&0x00FF;

 TR0 = 1; // start timer 0
 }

// Timer 1 interrupt service routine
void T1ISR (void) interrupt 3
 {
 TR1 = 0; // stop timer 1
 TH1 = (-1250)>>8; // count for 400 Hz
 TL1 = (-1250)&0x00FF;
 P1_7 = ~P1_7; // music maestro

 TR1 = 1; // start timer 1
 }

