Compléments au Chapitre 1

Quelques rappels sur la résolution des équations différentielles du second ordre sans second membre

Soit l'équation différentielle du second ordre :

$$C_1\ddot{x}(t) + C_2\dot{x}(t) + C_3x(t) = 0$$
 (1)

Avec C_1 , C_2 et C_3 des constantes réelles.

L'équation caractéristique du second degré associée est :

$$C_1 r^2 + C_2 r + C_3 = 0 (2)$$

Elle admet comme discriminant Δ , défini par :

$$\Delta = C_2^2 - 4C_1C_3 \tag{3}$$

Les solutions de l'équation caractéristique (2), et donc de l'équation différentielle (1), dépendent du signe de Δ (3) :

Δ> 0	2 solutions réelles pour l'équation caractéristique (2) : $r_1 = \frac{-C_2 - \sqrt{\Delta}}{2C_1} \text{ et } r_2 = \frac{-C_2 + \sqrt{\Delta}}{2C_1}$ L'ensemble des solutions de l'équation différentielle (1) est construit à partir de combinaisons linéaires de $x_1(t) = e^{r_1 t}$ et $x_2(t) = e^{r_2 t}$, c'est-à-dire : $x(t) = Ae^{r_1 t} + Be^{r_2 t} \text{ avec } A, B \in \mathbb{R}$	
Δ= 0	Une solution réelle pour l'équation caractéristique (2) : $r = -\frac{C_2}{2C_1}$ L'ensemble des solutions de l'équation différentielle (1) est donné par : $x(t) = (At + B)e^{rt} \text{ avec } A, B \in \mathbb{R}$	
Δ< 0	2 solutions complexes pour l'équation caractéristique (2) : $r_1 = \frac{-C_2 - j\sqrt{ \Delta }}{2C_1} \text{ et } r_2 = \frac{-C_2 + j\sqrt{ \Delta }}{2C_1}$ L'ensemble des solutions de l'équation différentielle (1) est construit à partir de combinaisons linéaires de $x_1(t) = e^{r_1 t}$ et $x_2(t) = e^{r_2 t}$, c'est-à-dire : $x(t) = Ae^{r_1 t} + Be^{r_2 t} \text{ avec } A, B \in \mathbb{C}$	

Compléments au Chapitre 2 Quelques rappels sur la résolution des équations différentielles du second ordre à second membre non nul

Soit l'équation différentielle du second ordre :

$$C_1\ddot{x}(t) + C_2\dot{x}(t) + C_3x(t) = d(t)$$
 (4)

d étant de la forme $d(t) = e^{\lambda t} [A(t) \cos(wt) + B(t) \sin(wt)]$, avec λ et $\omega \in \mathbb{R}$ et A et B des polynômes de degré inférieur ou égal à n à valeurs dans \mathbb{R} .

On a déjà vu (page 1) comment déterminer les solutions de l'équation homogène (1) (c'est-àdire sans second membre), $x^{homo}(t)$. Il faut aussi savoir déterminer au moins une **solution particulière** de l'équation (4), $x^{part}(t)$, pour connaître les solutions x(t) du problème, avec :

$$x(t) = x^{homo}(t) + x^{part}(t)$$

Solutions particulières de l'équation différentielle (4) :

Elles sont du type:

$$x^{part}(t) = t^p e^{\lambda t} [\alpha(t) \cos(wt) + \beta(t) \sin(wt)]$$

Avec α et β des polynômes de degré inférieur ou égal à n à valeurs dans \mathbb{R} et :

p = 0	si $r = \lambda + j\omega$ n'est pas racine de l'équation caractéristique (2) associée à l'équation différentielle homogène (1)	
p = 1	si $r = \lambda + j\omega$ est racine de l'équation caractéristique (2)	
p=2	si $r = \lambda + j\omega$ est racine double de l'équation caractéristique (2)	

Rappel: (2) : $C_1r^2 + C_2r + C_3 = 0$

Application : oscillateur (m,k,c) sous excitation sinusoïdale forcée à amplitude constante

Soit une excitation forcée sinusoïdale du type :

$$d(t) = f_0 \sin(\Omega t)$$

On identifie $\lambda=0,\,\omega=\Omega,\,$ A=0 et $B=f_0.$ A et B sont donc des polynômes de degré 0.

On modélise l'oscillateur par une masse m, un ressort de raideur k et un amortisseur de viscosité c. L'équation du mouvement de l'oscillateur est alors donnée par :

$$\left| m\ddot{\mathbf{x}}(t) + c\dot{\mathbf{x}}(t) + \mathbf{k}\mathbf{x}(t) = f_0 \sin(\Omega t) \right| \tag{5}$$

L'équation caractéristique associée à l'équation homogène (sans second membre) est :

$$mr^2 + cr + k = 0$$

On suppose que son discriminant, $\Delta = c^2 - 4km$ est strictement inférieur à 0 (c'est-à-dire que l'on suppose un <u>amortissement sous-critique</u> conduisant à des oscillations du système).

Alors:

$$r_1 = \frac{-c - j\sqrt{4km - c^2}}{2m}$$
 et $r_2 = \frac{-c + j\sqrt{4km - c^2}}{2m}$

Ou encore (cf Chapitre 1):

$$r_1 = -\xi \omega_0 - j\omega_1$$
 et $r_2 = -\xi \omega_0 + j\omega_1$

Ici, avec $\lambda = 0$ et $\omega = \Omega$, on a $r = \lambda + j\omega = j\Omega$ (cf tableau précédent). r est solution de l'équation caractéristique (i.e. $r = r_1$ ou r_2) ssi $\xi \omega_0 = 0$ et $\Omega = \pm \omega_1$.

Mais:

- $\Omega = -\omega_1$ n'a aucun sens physique (une pulsation ou une fréquence d'excitation ne peuvent pas être négatives);
- Le cas $\omega_0 = 0$ n'a pas d'intérêt pratique.

La seule solution acceptable est donc :

- $\xi = 0$: système conservatif;
- $\omega_1 = \omega_0 = \Omega$: excitation du système conservatif à sa pulsation propre, ω_0

Pour cette application, on a donc:

Valeur de p	Condition théorique	Concrètement
p = 0	si $r = -\xi \omega_0 + j\omega_1$ n'est pas racine de l'équation caractéristique (2)	Pour tous les oscillateurs dissipatifs en amortissement sous-critique et les oscillateurs conservatifs excités à $\Omega \neq \omega_0$
p = 1	si $r = -\xi \omega_0 + j\omega_1$ est racine de l'équation (2)	Pour tous les oscillateurs conservatifs excités à $\Omega=\omega_0$
p = 2	si $r = -\xi \omega_0 + j\omega_1$ est racine double de l'équation (2)	Cas de l' amortissement critique avec $\Delta = c_c^2 - 4km = 0$

Et finalement:

Cas p = 1 Oscillateur **conservatif** (
$$\xi = c = 0$$
) et **excité à $\Omega = \omega_0$**

Les solutions particulières de l'équation (5) $m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f_0 \sin(\Omega t)$ sont données par :

$$x^{part}(t) = t[\alpha \cos(\omega_0 t) + \beta \sin(\omega_0 t)] \text{ avec } \alpha, \beta \in \mathbb{R}$$

Remarques:

- α, β sont des scalaires car $B = f_0$ est un polynôme de degré 0 ici ;
- x^{part} et donc x tendent vers l'infini !! C'est le phénomène de **résonnance** causée par l'**excitation forcée d'un système conservatif à sa fréquence/pulsation propre**.

Cas p =0
Oscillateur **conservatif** (
$$\xi = c = 0$$
) excité à $\Omega \neq \omega_0$
ou oscillateur **dissipatif** avec amortissement **sous-critique**

Les solutions particulières de l'équation (5) $m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f_0 \sin(\Omega t)$ sont données par :

$$x^{part}(t) = \alpha \cos(\Omega t) + \beta \sin(\Omega t) \text{ avec } \alpha, \beta \in \mathbb{R}$$

Remarques:

- α, β sont des scalaires car $B = f_0$ est un polynôme de degré 0 ici ;
- La pulsation/fréquence de x^{part} est égale à la pulsation/fréquence de l'excitation forcée.

Pas d'intérêt pratique : pas d'oscillation.