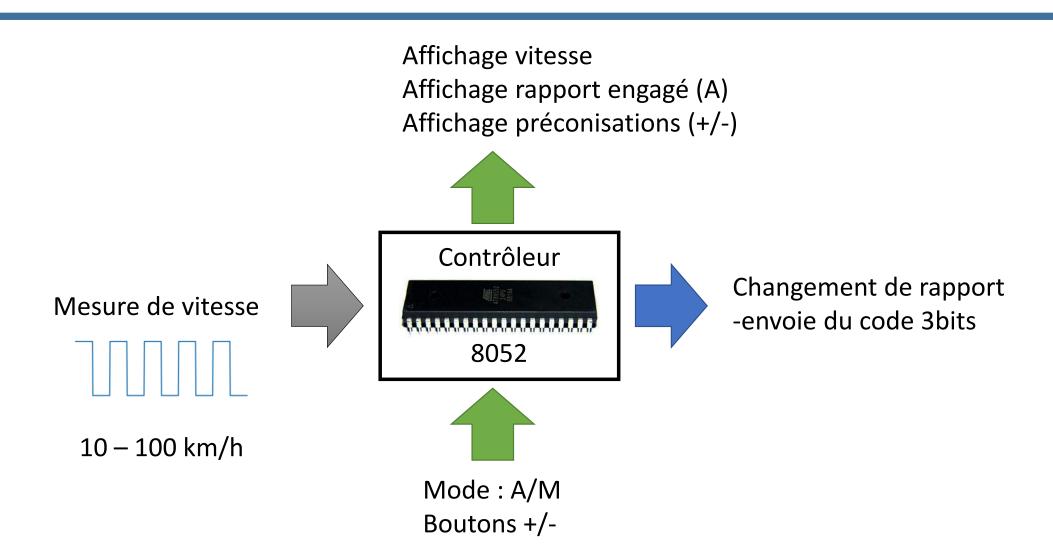
Ingénierie de μ-contrôleurs, 4A MT

1^{ère} séance : TP1 « mesure de la vitesse »

Intervenant: Nikolay Smagin

Responsable pédagogique : Christophe Delebarre

But général de ces TPs

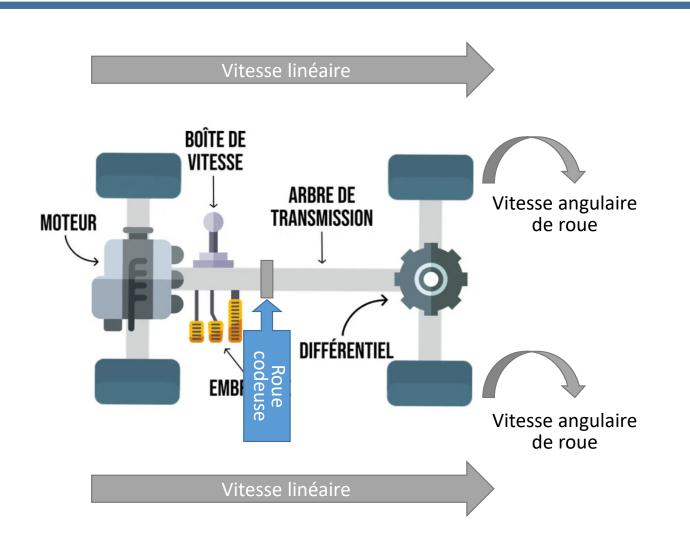

Calculateur de la boite de vitesse : il gère le passage des vitesses et les différents modes d'utilisation, les commandes et consignes de l'utilisateur, l'affichage, l'auto-adaptativité des programmes (à la température de l'huile de boite, au vieillissement, ...), ... C'est la programmation de ce calculateur qui servira d'illustration pour ce TP.

Le seul capteur que nous considérons est celui de sortie de boite (proportionnel à la vitesse du véhicule), il fournit 20 « tops » par tour par usinage d'une roue sur l'arbre de sortie.

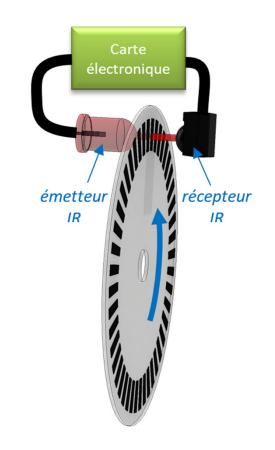
Déroulement général de ces TPs

- **TP1**. Récupération de l'information sur vitesse dans une plage 10 100 km/h (utilisation des temporisateurs) ; un critère de 5% sera admis sur la précision.
- **TP2**. Affichage de la **vitesse** au port série du **mode** et du **rapport engagé**. Contrairement à l'énoncé joint ci-dessous, l'afficheur LCD ne sera pas utilisée car il n'est pas accessible par défaut sous Keil μVision.
- **TP3**. Gestion du passage automatique des rapports en fonction de la vitesse (mode auto).

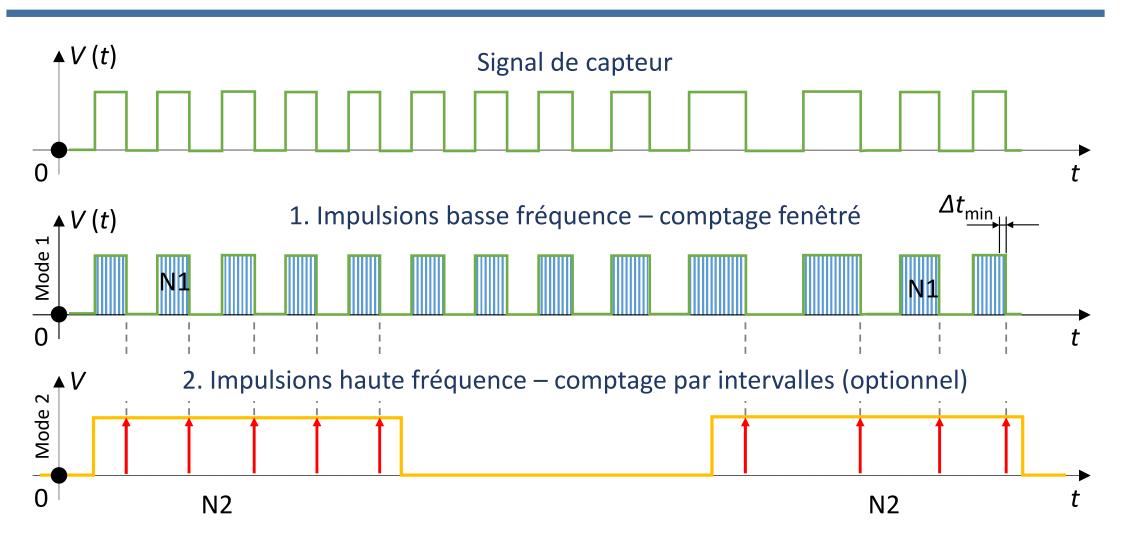
Contrôleur de la boîte de vitesses

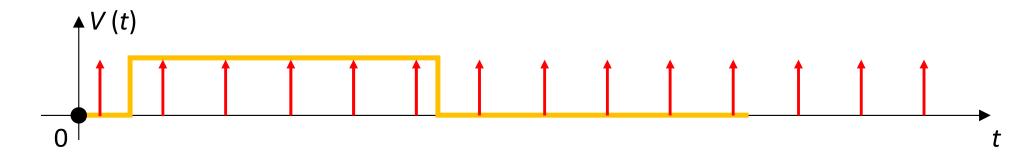

On utilisera ce tableau pour les seuils de passages de rapports pour TP2-TP3

Nom	Vitesses	Valeur (km/h)		
	passages de rapports +			
S01	$0 \rightarrow 1$	9		
S12	$1 \rightarrow 2$	19		
S23	$2 \rightarrow 3$	39		
S34	$3 \rightarrow 4$	69		
S45	4 → 5	89		
	passages de rapport -			
S54	5 → 4	76		
S43	4 → 3	56		
S32	$3 \rightarrow 2$	30		
S21	$2 \rightarrow 1$	16		
S10	1 → 0	10		


Contrôleur de la boîte de vitesses

TP1.1: Mesure de vitesse : dimensionnement


Mesure de vitesse avec une roue codeuse


20 « tops » par tour de roue

Mesure de fréquence : comptage des impulsions

Estimation d'erreur

Erreur de comptage : ±1 impulsion

$$v_1 = f(N_{impulsions})$$

$$v_2 = f(N_{impulsions} + 1)$$

erreur =
$$\frac{\Delta v}{v_1} 100\% = \frac{v_2 - v_1}{v_1} 100\%$$

Function_Mcycles sont aussi à prendre en compte

$$erreur \leq 5\%$$

Choisissez n'importe quel pneu de dimensions réalistes

...pris sur internet

TOP DIMENSIONS PNEUMATIQUES AUTO

PNEUS 14 POUCES ET MOINS	PNEUS 15 ET 16 POUCES	PNEUS 17 POUCES ET PLUS
Pneus 155/65 R14	Pneus 195/65 R15	Pneus 225/45 R17
Pneus 165/65 R14	Pneus 185/65 R15	Pneus 225/50 R17
Pneus 175/65 R14	Pneus 185/60 R15	Pneus 205/50 R17
Pneus 165/70 R14	Pneus 195/55 R15	Pneus 215/55 R17
Pneus 145/70 R13	Pneus 195/50 R15	Pneus 215/50 R17
Pneus 155/70 R13	Pneus 185/55 R15	Pneus 205/55 R17
Pneus 165/70 R13	Pneus 205/55 R16	Pneus 215/50 R17
Pneus 155/80 R13	Pneus 195/55 R16	Pneus 205/55 R17
Pneus 175 70 R14	Pneus 215/55 R16	Pneus 235/55 R17
Pneus 185 65 R14	Pneus 205/60 R16	Pneus 225/40 R18
Pneus 185 60 R14	Pneus 215/60 R16	Pneus 235/45 R18
Pneus 195 70 R14	Pneus 205 65 R15	Pneus 215/55 R18
Pneus 185 55 R14	Pneus 33 12.5 R15	Pneus 225/55 R18
Pneus 185 70 R13	Pneus 165 65 R15	Pneus 225/45 R19
Pneus 165 65 R13	Pneus 175 65 R15	Pneus 215 60 R17
Pneus 135 80 R13	Pneus 215 65 R16	Pneus 205 45 R17
Pneus 145 80 R13	Pneus 265 70 R16	Pneus 225 55 R17
Pneus 175 70 R13	Pneus 195 50 R16	Pneus 265 65 R17
Pneus 135 70 R13	Pneus 215 45 R16	Pneus 245 45 R18
Pneus 145 60 R13	Pneus 205 45 R16	Pneus 225 45 R18

Attention : diamètre du pneu ≠ diamètre de la jante

Hauteur du flanc = 205 mm*0,55

Diamètre du pneu = [R en pouces]*25,4(pouces -> mm) + 2*[Hauteur du flanc]

Estimation d'erreur

Pour un comptage fenêtré

- 1. Il ne faut pas que le compteur déborde à v_{min} (10 km/h)
- 2. Il faut qu'il ait assez de comptages pour v_{max} afin que erreur < 5%

Pour un comptage par intervalles

- 1. Il faut qu'il ait assez de comptages pour v_{max} (10 km/h) afin que erreur < 5%
- 2. Il ne faut pas que le compteur déborde à v_{max} (100 km/h)
- 3. Il ne faut pas que $T_{\text{intervalle}}$ soit trop long (latence < 500 ms)

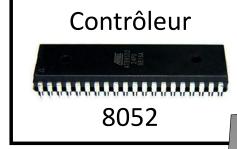
1^{ére} sous-partie TP1.1

- Dimensionner le projet : choisir le diamètre de roue R13 R17 calculer les fréquences correspondantes à 10 100 km/h.
- Calculer les fréquences correspondant aux vitesses 10, 25, 45, 75, 95 km/h.
- Pendant ce TP, on choisit f_{OSI} = 12 MHz, donc Δt_{min} = 1 μs .
- Comptage des impulsions représente une mesure de l'intervalle temporelle Δt , alors $v \backsim k / N_{\text{compt}}$. Définir k. Conseil : Pour le calcul final la procédure DIV24_16 sera nécessaire.

Contrôleur de la boîte de vitesses

TP1.2 : Mesure de vitesse (fréquence) avec les temporisateurs de AT89C51ED2

Virtualisation de la tache

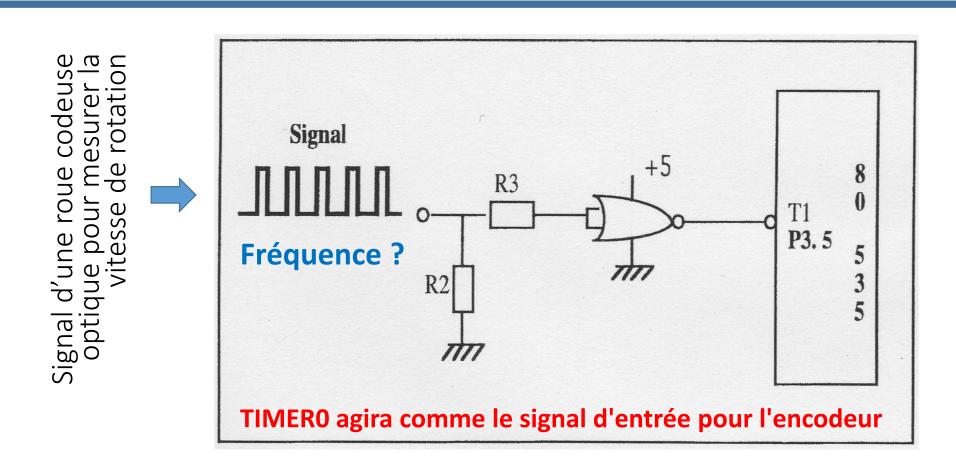

En absence du matériel **TIMERO** fournira des signaux

correspondant à 10 – 100 km/h

Affichage vitesse

Affichage rapport engagé (A)
Affichage préconisations (+/-)

Mesure de vitesse


TIMERO

10, 25, 45, 75, 95 km/h

TIMER1

Sera utilisé pour compter les impulsions

Compteur mesure les battement de sur la broche TO ou T1

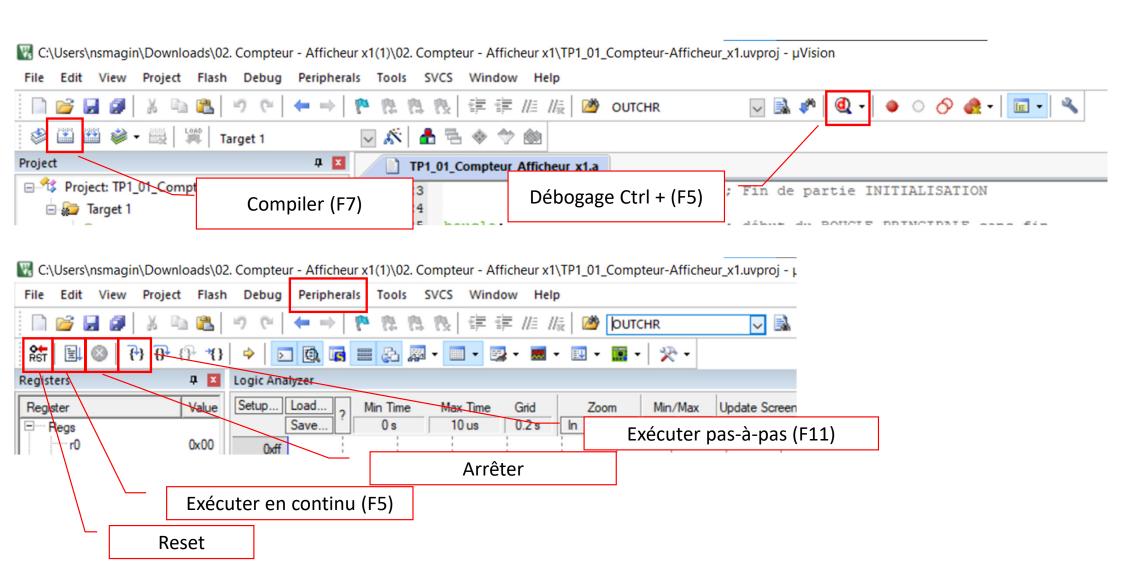
Vitesse -> Fréquence (à partir de dimensionnement)

10, 25, 45, 75, 95 km/h

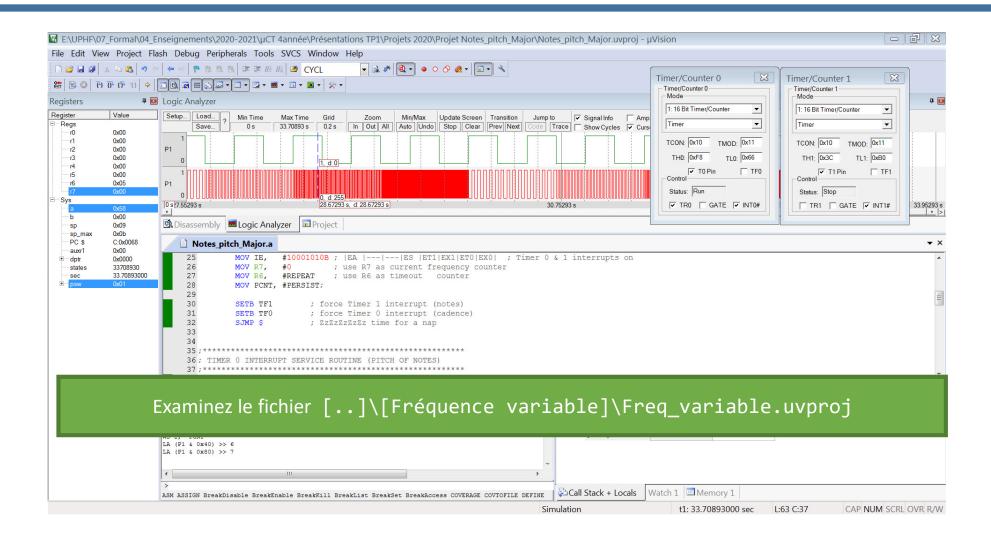
TIMERO

TIMER1

Mesure cette Fréquence par comptage -> nombre N


Conversion

Avec la procédure DIV16_16 (k/N) de votre énoncé, on retrouve la Vitesse (±5%)


Affichage

Par communication port série

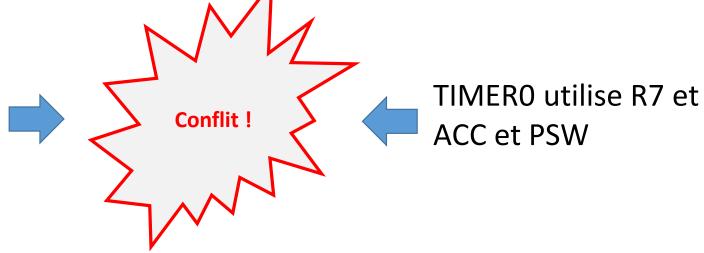
A chaque modification du code : sortez de la session du débogage et recompilez !

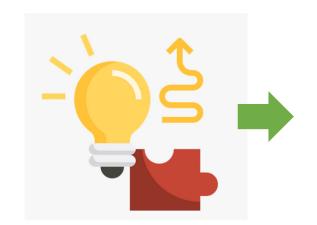
Exemple: Interaction de temporisateurs

2^{ème} sous-partie du TP1.2

- Avec votre dimensionnement, régler la fréquence de TIMERO pour imiter les signal du capteur correspondant à 10, 25, 45, 75, 95 km/h.
- Effectuer la mesure temporelle des ces 5 fréquences avec TIMER1.

3^{ème} sous-partie TP1.3


TP1.3 : Implémentation de fonctions


Quelques indices

```
A remplir par de
                                                                  A remplir par de
                                             bonnes valeurs
                                                                  bonnes valeurs
Placez le point d'arrêt sur la ligne 75 pour le débogage :
       74 EXT1TSR:
       75
                 CLR
                       TR1
                                     ; arrête
                                               e temporisateur
Descriptif de l'utilisation de la fonction DIV2416 :
  132 ; Fonction de division DIV24 16 /ne pas modifier)
  133 DIV2416:
                        Dividende : R4,R3,R2 ; Diviseur : R6,R5
  134 ; ENTREE :
  135 ; INTERMEDIAIRE : Utilisation de : R1, R0, q1, q0 ;
  136 ; SORTIE :
                         Résultat : R3,R2 ; Reste : R1,R0
  137; Ne modifiez pas le code qui est ci-dessous !!!!!!!!
  138
               R0,#00 ; initialisation du R0
  139
          mov
  140
                   R1,#00 ; initialisation du R1
          mov
```

Importance de sauvegarde des registres

Fonction DIV2416 utilise tout les registres R0 – R7, ACC et PSW

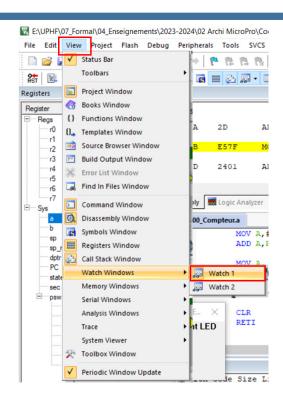
La solution est de sauvegarder les données sur la pile (stack)

Avant d'utiliser la fonction DIV2416, sauvegarder l'état général du programme sur la pile

```
push 00h ; R0
push 01h ; R1
... ; jusqu'à R7
push ACC ; Accumulator
push PSW ; Program Status Word
```

.... CALL FUNCTION

```
pop PSW pop ACC pop 07h .... pop 00h
```


Ressources utilisés

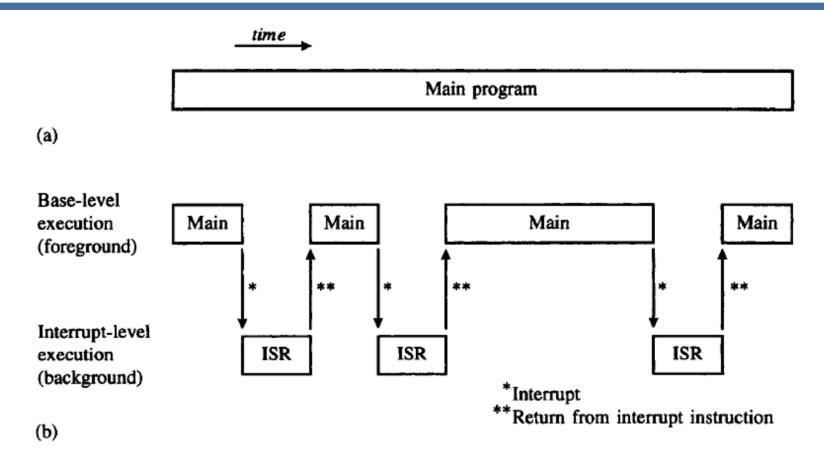
Registre	Fait quoi	Où		
R7	Compteur de fréquence	TOISR		
RO	Variable interne	DIV24_16		
R1	Variable interne	DIV24_16		
R2	Dividente octet bas	DIV24_16		
R3	Dividente octet moyen	DIV24_16		
R4	Dividente octet haut	DIV24_16		
R5	Diviseur octet bas	DIV24_16		
R6	Diviseur octet haut	DIV24_16		
R7	Variable interne	DIV24_16		
@R0	Adressage indirect port série	SPISR (pour le TP2)		
Registre	Fait quoi		Où	
P1.7	Etat de temporisateur 0 (TIMERO) – capteur de vitesse		TOISR	
P3.3	Broche INT1 – pilotage de TIMER1		TOISR	
P1.6	Procédure de division – observer le timing		DIV16_16	

3^{ème} sous-partie du TP1.3

- Implémenter la fonction DIV2416 de l'énoncé en faisant attention à sauvegarder le registres sur la pile
- Visualisez la valeur de vitesse calculée et mise dans une variable VITHEX. Elle sera utilisée par la suite.
 - Pour cela, ouvrez la fenêtre 'Watch1': Veiw -> Watch Windows -> Watch1

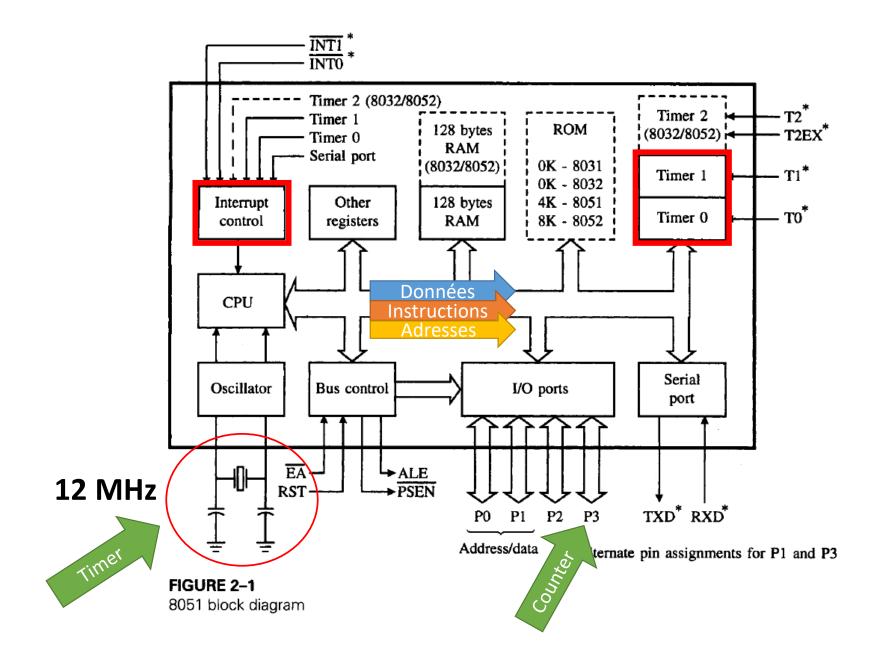
• Optionnel : ajouter d'autres valeurs des vitesses (fréquence du temporisateur TIMERO)

Bon courage!

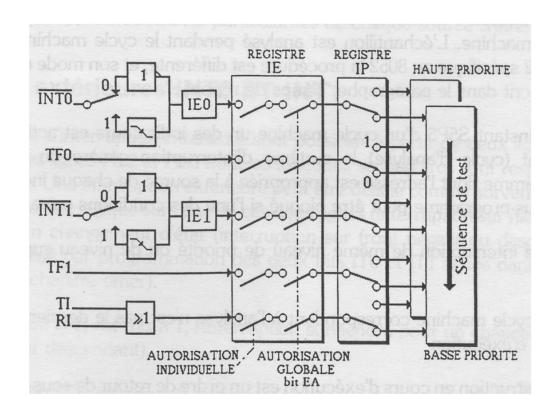

Au supplément du compte-rendu il est nécessaire de déposer les projets entiers Keil µVision : le dossier entier compressé incluant les fichiers *.uvproj et *.a

TP1: Récupération de l'information sur vitesse dans une plage 10 – 100 km/h

Annexe


Temporisateurs

Fonctionnement par interruptions matérielles


FIGURE 6-1

Program execution with and without interrupts (a) Without interrupts (b) With interrupts

Fonctionnement par interruptions matérielles

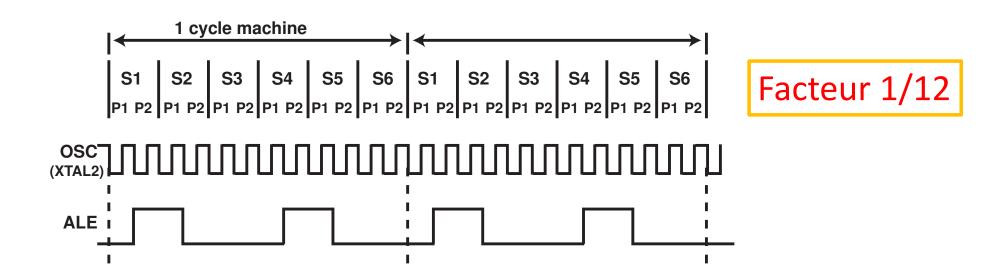
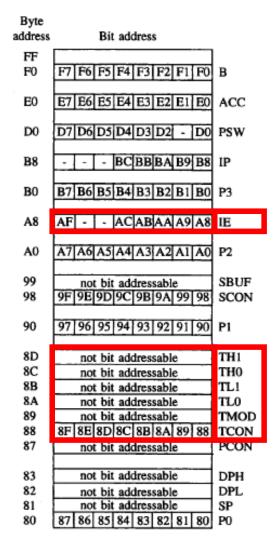
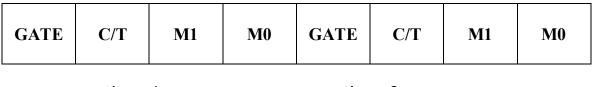

Rappel: Ce sont les registres IE et IP qui sont responsables pour la configuration des interruptions

TABLE 6-1IE (interrupt enable) register summary

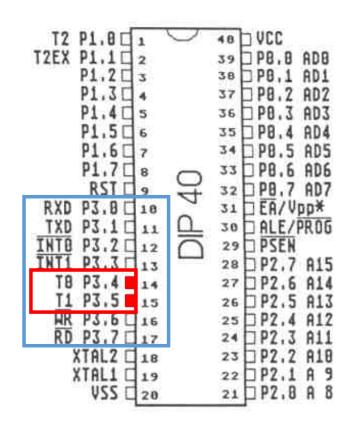
Bit	Symbol	Bit Address	Description (1 = Enable, 0 = Disable)
IE.7	EA	AFH	Global enable/disable
IE.6	_	AEH	Undefined
IE.5	ET2	ADH	Enable Timer 2 interrupt (8052)
IE.4	ES	ACH	Enable serial port interrupt
IE.3	ET1	ABH	Enable Timer 1 interrupt
IE.2	EX1	AAH	Enable external 1 interrupt
IE.1	ET0	А9Н	Enable Timer 0 interrupt
IE.0	EX0	A8H	Enable external 0 interrupt


Temporisateur mesure les battement de l'oscillateur (quartz)

Signal de l'oscillateur interne divisé par 12.
Il lui faut 1 cycles-machine pour incrémenter un temporisateur.


Description des TIMERS

- Chaque Timer est composé d'un compteur 16 bits accessible sous la forme de 2 registres de 8 bits faisant partie du SFR
 - TH0 et TL0 pour le timer 0.
 - TH1 et TL1 pour le timer 1.
- Le registre **TMOD** permet le choix de la fonctions des modes.
- Le registre **TCON** concerne l'interruption, et le déclenchement du compteur.
- Chaque Timer possède 2 fonctions distinctes avec 4 modes de fonctionnement.



SPECIAL FUNCTION REGISTERS

Description de TMOD (89H)

- timer 1 timer 0
- C/T: permet la sélection de la fonction du TIMER
 - C/T= 0 le timer est en fonction temporisateur : compteur incrémenté soit à partir du signal d'horloge, soit à travers un circuit de division de fréquence.
 - C/T= 1 le timer est en fonction comptage : le compteur incrémenté par la détection d'événements extérieurs (changements d'état appliqués aux broches T0=P3.4 ou T1=P3.5).
- GATE : permet de choisir le mode de déclenchement du compteur.
 - GATE=0 : le timer x est validé si le bit « TRx » =1. (voir TCON)
 - GATE=1 : le timer x est validé si le bit « TRx » =1 et que sa broche d'entrée « INTx » (P3.2 ou P3.3) est à l'état 1.

Description de TCON (88H)

TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

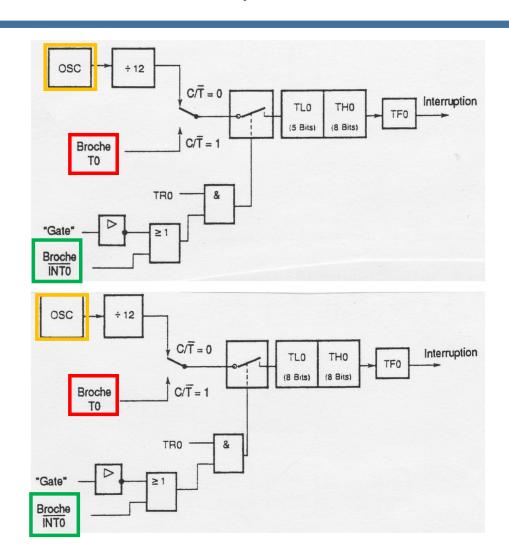
TFx: Indicateur de débordement du TIMER x.

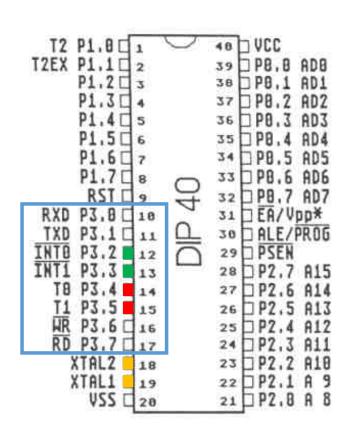
Mis à 1 automatiquement lorsque le compteur repasse à 0. Si interruption correspondante autorisée, indicateur remis à 0 automatiquement lorsque le sousprogramme (ISR) d'interruption est exécuté.

- TRx : Bit de déclenchement du TIMER x. (1 pour lancer, 0 pour arrêter).
- IEx: Indicateur de transition sur la source externe INTX (P3.2 ou P3.3).

Cet indicateur est mis à 1 automatiquement lorsqu'une transition est détectée sur la borne INTx. Lors du service d'interruption, cet indicateur est remis à 0.

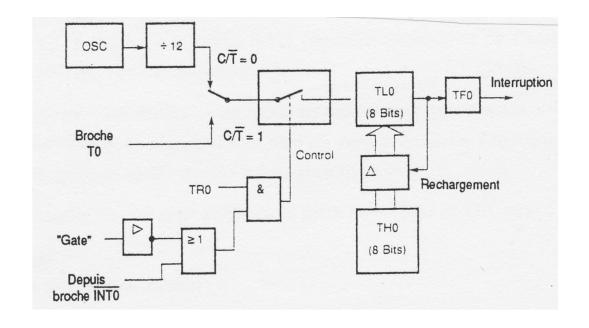
ITx : Sélection du type d'événement devant déclencher l'interruption depuis la source INTx.

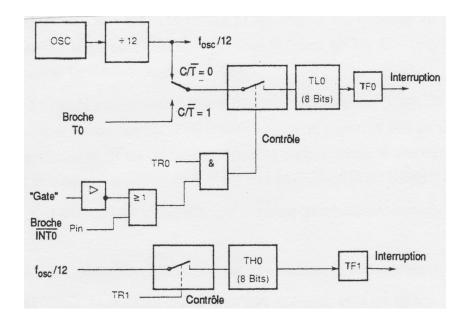

ITx=0 interruption sur la détection d'un niveau 0 sur INTx.


ITx=1 interruption sur la détection d'une transition négative.

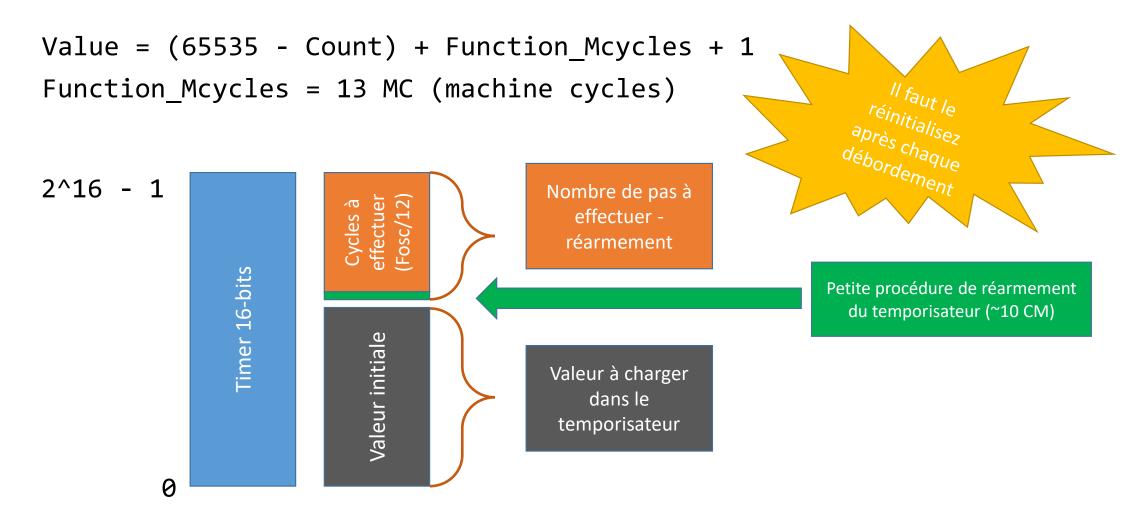
TMOD: 4 modes de temporisateurs/compteurs

Mode #00B


■ Mode #01B



TMOD: 4 modes de temporisateurs/compteurs


■ Mode #10B

■ Mode #11B

Comment régler le timing (16 bits)?

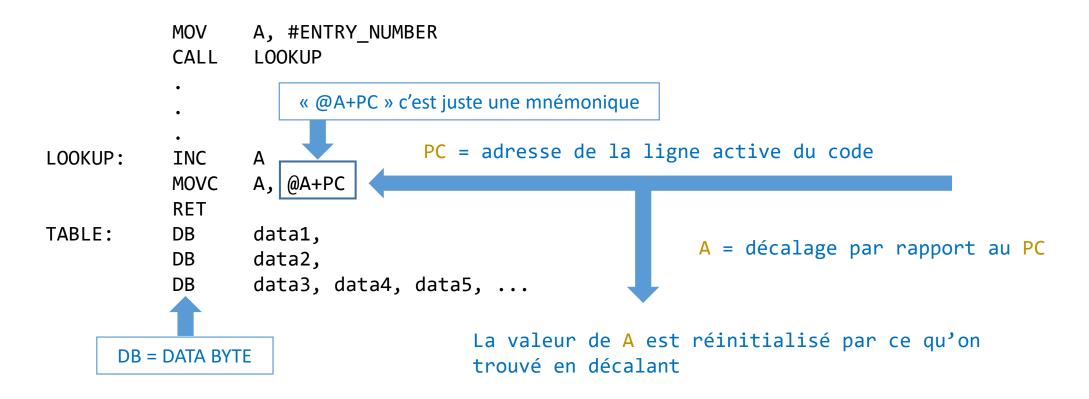
Réglage de temporisateur

Calculation of Timer 0 reload value needed to achieve timer delay of 20 ms. Oscillator frequency is 11.0592 MHz.

$$=\frac{20\times10^{-3}}{12}$$

$$\frac{12}{11.0592\times10^{6}}$$

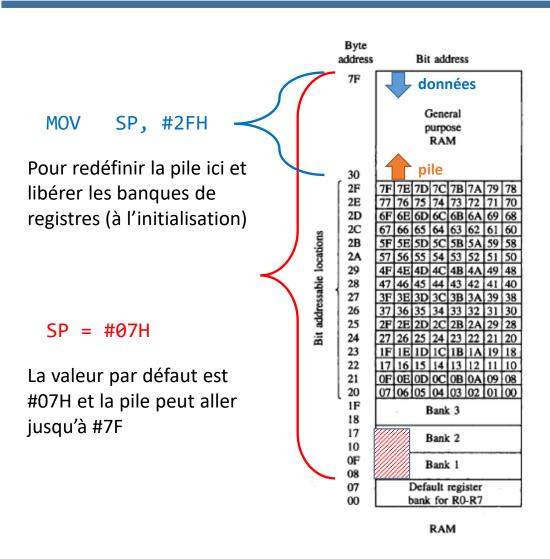
= 36864 (must be rounded to the nearest integer)

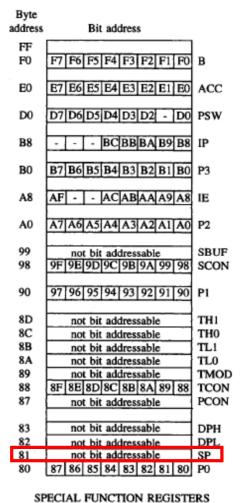

= 0x6FFF

so Timer 0 is loaded with:

$$TH0 = 0x6F;$$

 $TL0 = 0xFF;$

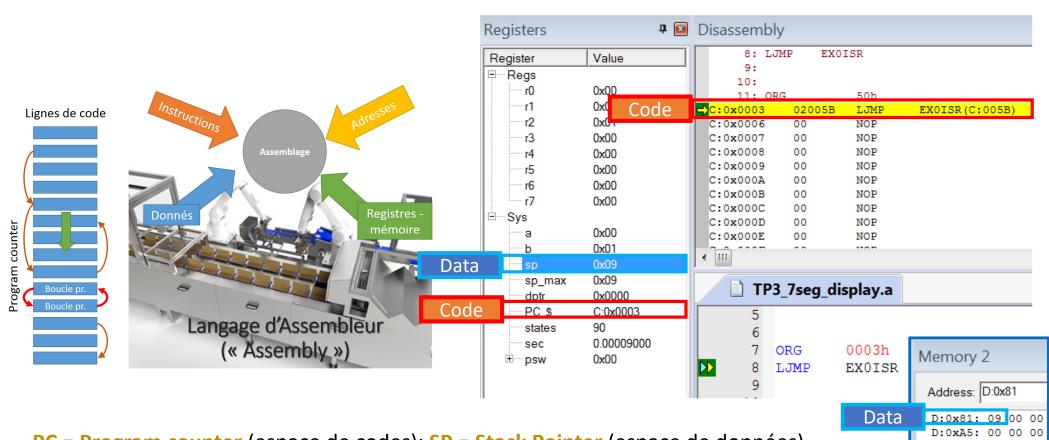

Tableau de consultation (look-up table)


Ce code est équivalent à {A = TABLE[A]} en langage C (indexation)

Stack Pointer & Appel des fonctions

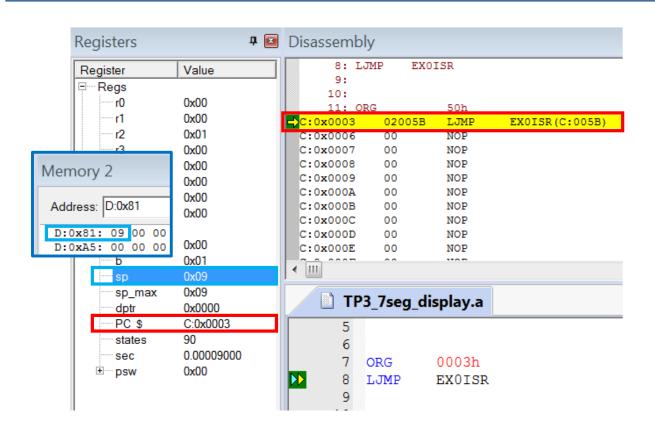
SP = Stack Pointer

La valeur de réinitialisation de 07H maintient la compatibilité avec le prédécesseur du 8051, le 8048, et a pour conséquence que la première écriture de pile stocke les données à l'emplacement 08H. Si le logiciel d'application ne réinitialise pas le SP, alors la banque de registres 1 (et peut-être 2 et 3) n'est pas disponible, puisque cette zone de RAM interne est la pile.


SP = Stack Pointer

Un problème potentiel réside toutefois dans l'utilisation des registres dans les sous-routines. Au fur et à mesure que la hiérarchie des sous-routines se développe, il devient de plus en plus difficile de savoir quels registres sont affectés par les sous-routines. Une bonne pratique de programmation consiste donc à enregistrer sur la pile les registres qui sont modifiés par une sous-routine, puis à les restaurer à la fin de la sous-routine.

Fonction


SP sert à PC pour lui indiquer où revenir après les sous-routines ou les interruptions

Le compteur de programme et le pointeur de pile

PC = Program counter (espace de codes); SP = Stack Pointer (espace de données)

Exemple : le compteur de programme

PC = Program counter (espace de codes) ; SP = Stack Pointer (espace de données)