Concept of nanocomposite:

- dispersion of nanometric particles (from 10 nm to less than 500 nm)
- inside or outside the matrix grains (at grain boundaries)
- need sourcing nanopowders
- adapt the process to control nanostructure

Niihara et Nakahira 1991

(2010) EU definition: from 1 to 100 nm

Alumina based nanocomposites (after annealing): matrix ~ 350 to 400 MPa – ~ 3.7 MPa \sqrt{m}

Year	Authors	Dispersion (% - type - nm)	Matrix GS (µm)	Strength (MPa)	Toughness (MPam ^{1/2})	Density
1991	Niihara	5 – SiC – 40		1520	4.8	
		- Si ₃ N ₄		850	4.7	
1997	Zhu et al	$15 - Si_3N_4 - 80$	1.0	820	6.0	98.7
	Davidge et al	5 – SiC – 200	2.5	780	3.5	~100
	Bhaduri et al	$10 - ZrO_2 - 25$	0.04		8.4	98.0
1999	Anya et al	5 – SiC – 200	2.9	646	4.6	99.8
2001	Siegel et al	10 – MWCNT	0.50		4.2	~100
2002	Maensiri and Roberts	5 – SiC – 200	2.8	417	2.6	99.9
2005	Choi	3 – SiC – 80 ?	0.4 ?	760	5.06	
2006	Hae et al	5 – SiC – 20 20 – SiC – 20	0.2 ?	620 810	2.9 3.7	~100 ~100
2011	Lv et al	5 – SiC - 200	2,1	536	2.9	99.6

Even 20 years after, performances of Niihara's composites have not yet been achieved

Alumina based nanocomposites (after annealing): matrix ~ 350 to 400 MPa – ~ 3.7 MPa \sqrt{m}

Year	Authors	Dispersion (% - type - nm)	Matrix GS (µm)	Strength (MPa)	Toughness (MPam ^{1/2})	Density
1991	Niihara	5 – SiC – 40		1520	4.8	
		- Si ₃ N ₄	00.0			
1997	Zhu et al	$15 - Si_3N_4 - 80$	99.9 -		1	
	Davidge et al	5 – SiC – 200	90	Ó		
	Bhaduri et al	10 – ZrO ₂ – 25	-	Q	Ê	
1999	Anya et al	5 – SiC – 200	(°/°)	Q	Ë	
2001	Siegel et al	10 – MWCNT	10-	9	Ē	-
2002	Maensiri and Roberts	5 – SiC – 200	F(0	9	†	-
2005	Choi	3 – SiC – 80 ?		⊖Al2O3 □Al2O3/5	SIC	
2006	Hae et al	5 – SiC – 20 20 – SiC – 20	1	1 (Annealed)		
2011	Lv et al	5 – SiC - 200	100	500 0 _f (MPa)) 1000 3	000

But reliability is highly improved !

From micro- to nano- ceramic composites

Dispersion of nano- is difficult:

dispersion is the consequence of: (DLVO theory)

- Vander Waals attraction forces
- electrostatic repulsion force
- steric shielding: function of the adsorbed species sizes
- a "potential barrier" impedes the particles to flocculate
- resulting level of repulsion depends also on particle size !

From macro- to nano- ceramic composites

Influence of particle size

From micro- to nano- ceramic composites

Still controversial:

a number of possible mechanisms have been proposed

• Niihara (91): - Nano-sized dispersions restrain the grain growth

-Thermal mismatch between matrix and dispersoids \rightarrow tensile stresses in the matrix \rightarrow dislocation movements \rightarrow dislocation pin and pile up by nanoparticles \rightarrow subgrain boundaries within the matrix \rightarrow refinement of matrix induces strengthening

Many authors **did not agree** with Niihara proposal:

- calculated tensile stresses ($\Delta \alpha$) too low to form substructure, but strengthening is due to matrix grain refinement (Fang 97)
- strengthening effect is still present at high temperature (Deng 98)
- flaws healing (Wu 98 ; Anya 98 2000)

Other proposals:

- near surface compressive stress strengthening (Wu 2008)
- dislocation network strengthening (Zhang 2007)
- strengthening via reduction in process defect size (Sternitzke 97)
- calculation of internal stress fields during cooling ($\Delta \alpha$) \rightarrow reduction of flaw size \rightarrow crack penetrates into the matrix grain (Pezzoti et al 2001 02)

Stresses were calculated:

- ~147 MPa (Lv, Zhang 2010)
- > 1 GPa (Choi 2005)

However, all authors **agree** on:

- residual stresses relaxation is much more difficult in nanocomposites
- the rupture mode changes from inter- to trans-granular

Other proposals:

Grain boundary strengthening through:

- pinning effect (Deng 98-Anya 97-Ohji 99)
- inter-granular fracture energy > trans-granular fracture energy (Jiao 97)
- crack deflection by SiC particles (Honglai-Tan 98)
- compression of the grain boundaries (Pezzotti 2001)

Dislocation network blocked by SiC movement impedes the movement of new dislocations (Anya 2000)

Lab processing of ceramic nanocomposites

 ζ potential measurement - adjustment (acoustic method)

ceramic beads (from 50 to 300 µm)

Some examples of enhanced behaviours:

Typical microstructure (TEM)

 $\begin{array}{l} \text{Al}_2\text{O}_3-\text{SiC} \text{ nano } 40\text{nm} \mbox{ (7.5 wt\%)} \\ \text{Hot Pressing} \\ \sigma_{\text{F}} \mbox{ up to} \sim 1000 \mbox{ MPa} \end{array}$

Creep resistance (flexural tests)

Creep resistance (flexural tests)

nanocomposite

matrix

For a same test temperature, a lot of cavitations can be seen in the matrix

Wear resistance (erosion)

- · It has to be noted that wear increases with matrix grain size
- · But SiC addition limits also the grain growth

Courtesy R. Todd

Corrosion resistance

crystallisation of the amorphous phase

Al₂O₃ – metal particles : Ni, Cu, Co, Fe, Cr, Mo, Nb...

Processing

- liquid precursors (nitrates...)
- + alumina powder,
- calcination under reducing atmosphere sintering

 Al_2O_3 / Ni

F. Petit

Literature data							
				σ _F MPa	K _{IC} MPa√m		
	1995	Sekino	5% W	$528 \rightarrow 645$	$3.2 \rightarrow 3.8$		
	1996	Sekino	5% Ni	683 →1090	3.5 ightarrow 3.5		
	1999	Chen	5% Ni	$390 \rightarrow 526$	3.6 ightarrow 4.2		
	2001	Oh	5%Cu	$536 \rightarrow 953$	$3.6 \rightarrow 4.8$		
	2002	Ji	5% Cr	$475 \rightarrow 736$	3.6 ightarrow 4.8		
	2003	Li	5% Ni	420 → 530	$3.3 \rightarrow 5.2$		

• many reported works consider high (5 to 20 %) metal particles additions

• a recent paper shows only 0.69 % Mo give rise to an large increase of strength (from 320 to over 700 MPa) and toughness (from 4.0 to 6.3 MPa \sqrt{m}) • even for so limited additions, fracture changes from inter- to transgranular mode

Matrix : $AI_2O_3 \alpha = 8,6 \ 10^{-6} \ K^{-1}$

 $\Delta \alpha = \alpha_{m} - \alpha_{p} < 0 \quad (nickel, iron, cobalt)$ $\alpha_{Ni} = 13 \ 10^{-6} \ \text{K}^{-1} \quad \alpha_{\text{Fe and Co}} = 12 \ 10^{-6} \ \text{K}^{-1}$

matrix

matrix

 $\rightarrow \leftarrow$

 $\Delta \alpha = \alpha_m - \alpha_p > 0 \quad (molybdenum, chromium)$

 $\alpha_{Mo}=~$ 5 10^{-6} K^{-1} ~~ $\alpha_{Cr}=~$ 6.2 10^{-6} K^{-1}

From micro- to nano- ceramic composites

Lab data

From micro- to nano- ceramic composites

Compared to microcomposites:

- increase of strength (up to 100%)
- creep resistance
- wear behaviour improvement
- high reliability
- high temperature resistance

BUT no increase of toughness lack of reproducibility! processing difficult to control

Despites this, today applications:

Wheel grinding nanocomposite grains

Treibacher Schleifmittel – UVHC patent

mixing of SiC particles slurry into a boehmite sol gelling _____calcination _____milling _____sintering

Schleifbedingungen:

ion

Biomaterials

Biomaterials Biolox® delta Ceramtec

- alumina alumina friction pair is the most couple used today
- Y-TZP could decompose in wet atmosphere
- alumina zirconia composites and close control of the micro- nanostructure allow to imagine new applications

Stress intensity factor (MPa.m^{1/2})

Biomaterials

The process allows to limit the grain size

J. Chevalier INSA Lyon (F) with Politecnico Torino

alumina-zirconia nano-composites

micro – nano

nano – nano

And the future?

crack bridging in alumina matrix by multiwall CNT

And the future?

New hybrid nanocomposites?

	K _{IC} (MPa√m)	σ _F (MPa)	H _V (GPa)
AI_2O_3	3.1	340	17.0
1% SiC	4.0	550	16.5
1% SiC, 5% MWNT	6.4	480	16.3
1% SiC, 7% MWNT	6.9	470	16.0
1% SiC , 10% MWNT	5.6	450	14.5

Ahmad, Pan 2008

Conclusion

Positive points:

- Increase of wear resistance
- Increase of creep resistance
- Either better strength or better toughness
- Possibility to use classical process (cost effective)
- Very limited additive content (low cost increase)

Negative points:

- It is difficult to optimise both strength and toughness
- Reproducibility!