

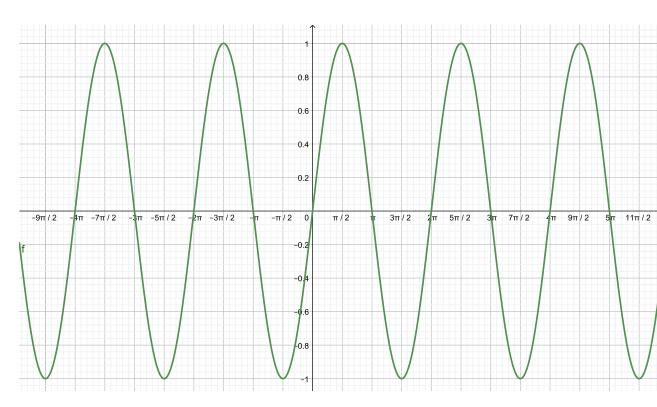
1 Bijectivité

Définition 1 Soit f une fonction définie sur I et à valeurs dans J

La fonction f est une bijection de I dans J si pour tout $y \in J$, il existe un unique $x \in I$ tel que y = f(x).

Autrement dit, toute valeur de J admet un unique antécédent dans I et si f(x) = f(x') alors x = x'.

Exemple 1 Le graphique suivant est celui de la fonction sinus. Cette fonction est-elle bijective? Si oui dire sur quels intervalles.



Théorème 1 Si f est une fonction de E dans F bijective alors elle admet une fonction réciproque elle-même bijective notée f^{-1} de F dans E. On a:

$$\begin{cases} y = f(x) \\ x \in E \end{cases} \Leftrightarrow \begin{cases} x = f^{-1}(y) \\ y \in F \end{cases}$$

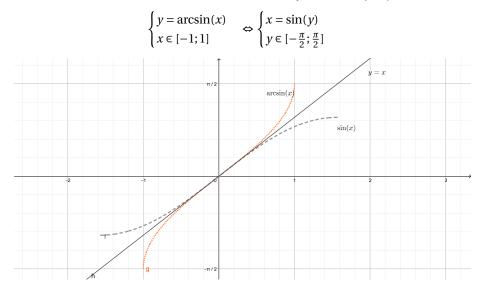
Théorème 2 Une fonction f continue et strictement monotone sur [a,b] admet une fonction récipoque f^{-1} sur f([a,b]) de même monotonie, de plus :

$$[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$$

Les courbes représentatives de f et f^{-1} sont symétriques par rapport à la première bissectrice.

2 Fonctions sin et arcsin

Théorème 3 La restriction de la fonction sinus à l'intervalle $[-\frac{\pi}{2}; \frac{\pi}{2}]$ à valeurs dans [-1; 1] est continue et croissante, elle admet donc une fonction réciproque notée arcsin :



La fonction arcsin possède les propriétés suivantes :

$$\forall x \in [-1; 1], \begin{cases} \sin(\arcsin(x)) = x \\ \arcsin(-x) = -\arcsin(x) \end{cases}$$

$$\forall x \in [-1; 1], [\arcsin(x)]' = \frac{1}{\sqrt{1 - x^2}}$$

$$\forall x \in [-\frac{\pi}{2}; \frac{\pi}{2}], \arcsin(\sin(x)) = x$$

On rappelle les propriétés suivantes :

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

$$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$$

$$\sin(2a) = 2\sin(a)\cos(a)$$

Exemple 2 Simplifier les expressions suivantes :

$$\forall x \in [-1; 1], \cos(\arcsin(x)) =$$
$$\forall x \in [-1; 1], \tan(\arcsin(x)) =$$

Donner les valeurs suivantes :

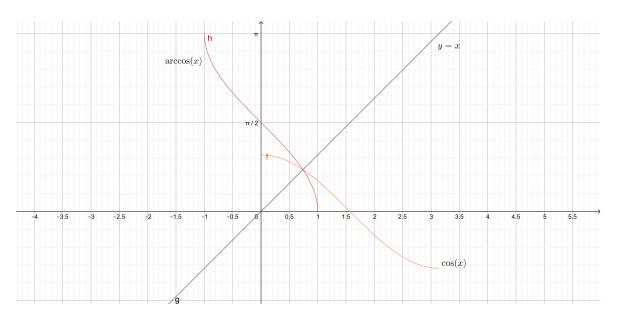
$$\arcsin(-1) =$$

 $\arcsin(0) =$
 $\arcsin(0.5) =$

3 Fonctions cos et arccos

Théorème 4 La restriction de la fonction cosinus à l'intervalle $[0;\pi]$ à valeurs dans [-1;1] est continue et décroissante, elle admet donc une fonction réciproque notée arccos :

$$\begin{cases} y = \arccos(x) \\ x \in [-1; 1] \end{cases} \Leftrightarrow \begin{cases} x = \cos(y) \\ y \in [0; \pi] \end{cases}$$



La fonction arccos possède les propriétés suivantes :

$$\forall x \in [-1; 1], \begin{cases} \cos(\arccos(x)) = x \\ \arccos(-x) = \pi - \arccos(x) \end{cases}$$

$$\forall x \in [-1; 1] [[\arccos(x)]' = -\frac{1}{\sqrt{1 - x^2}}$$

$$\forall x \in [0; \pi], \arccos(\cos(x)) = x$$

On rappelle les propriétés suivantes :

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\sin(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\cos(2a) = \cos(a)^2 - \sin(a)^2 = 1 - 2\sin(a)^2 = 2\cos(a)^2 - 1$$

Exemple 3 Simplifier les expressions suivantes :

$$\forall x \in [-1;1], \begin{cases} \sin(\arccos(x)) = \\ \tan(\arccos(x)) = \end{cases}$$

Donner les valeurs suivantes :

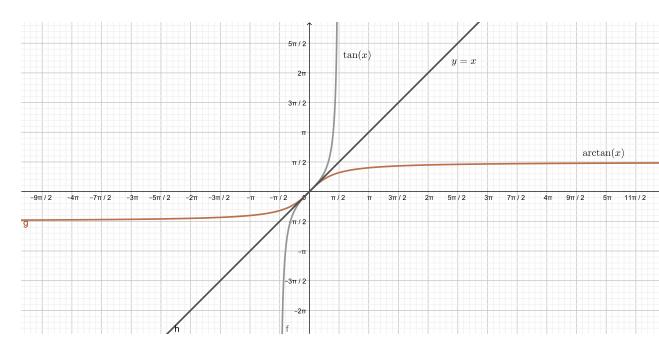
$$arccos(-1) =$$

 $arccos(1) =$
 $arccos(0) =$
 $arccos(0.5) =$

4 Fonctions tan et arctan

Théorème 5 La restriction de la fonction tangente à l'intervalle $]-\frac{\pi}{2};\frac{\pi}{2}[$ à valeurs dans $]-\infty;+\infty[$ est continue et croissante, elle admet donc une fonction réciproque notée arctan :

$$\begin{cases} y = \arctan(x) \\ x \in]-\infty; +\infty[\end{cases} \Leftrightarrow \begin{cases} x = \tan(y) \\ x \in [-\frac{\pi}{2}; \frac{\pi}{2}] \end{cases}$$



Exemple 4 En utilisant les propriétés précédentes, donner une nouvelle expression de :

$$tan(a+b) = tan(a-b) = tan(2a) = 1 + tan(x)^{2} = tan(x)$$

La fonction arctan possède les propriétés suivantes :

$$\forall x \in \mathbb{R}, \begin{cases} \tan(\arctan(x)) = x \\ \arctan(\frac{1}{x}) + \arctan(x) = signe(x) \frac{\pi}{2} \end{cases}$$

$$\forall x \in \mathbb{R}[\arctan(x)]' = \frac{1}{1 + x^2}$$

$$\forall x \in \mathbb{R}, \arctan(-x) = \arctan(x)$$

Exemple 5 Simplifier les expressions suivantes :

$$\forall x \in \mathbb{R}, \begin{cases} \sin(\arctan(x)) = \\ \cos(\arctan(x)) = \end{cases}$$

Donner les valeurs suivantes :

$$\arctan(1) =$$

$$\arctan(0) =$$

$$\arctan(\sqrt{3}) =$$

$$\lim_{x \to -\infty} \arctan(x) =$$

$$\lim_{x \to +\infty} \arctan(x) =$$